همه چیز راجع به شیمی
دوشنبه نوزدهم بهمن 1388
اترها ، ترکیباتی با فرمول عمومی R-O-R ، Ar-O-R یا Ar-O-Ar هستند. (Ar ، فنیل یا یک گروه آروماتیک دیگر است).

نام‌گذاری اترها

برای نامیدن اترها ، معمولا دو گروه متصل به اكسيژن را نام می‌بریم و به دنبال آن ، واژه اتر را می‌آوریم. اگر دو گروه یکسان باشند، گفته می‌شود اتر متقارن است ( مانند دی اتیل اتر ، دی ایزوپروپیل اتر ). اگر دو گروه متفاوت باشند، اتر ، نامتقارن است مانند ترسیوبوتیل متیل اتر.

خواص فیزیکی اترها

از آنجا که زاویه پیوند C-O-C در اتر ، 180 درجه است، گشتاورهای دو قطبی دو پویند C-O یکدیگر را خنثی نمی‌کنند؛ در نتیجه ، اترها مقداری گشتاور دو قطبی برآیند دارند. (مثلا 180.1 برای دی اتیل اتر). این قطبیت کم بر دمای جوش اترها تاثیر چندانی ندارد. دماهایی که در حدود دمای جوش آلكانها با وزن مولکولی مشابهند و از دمای جوش الکلهای ايزومري ، بسیار پایین‌ترند، به عنوان مثال ، دمای جوش n- هپتان ( ْ98دجه سانتی‌گراد ) ، متیل n- پنتیل اتر ( 100درجه سانتی‌گراد ) و n- هگزیل الکل ( 157درجه سانتی‌گراد ) را با یکدیگر مقایسه کنید. پيوند هيدروژني که مولکولهای الكل را با قدرت در کنار یکدیگر نگه می‌دارد، در اترها ممکن نیست؛ چون آنها فقط دارای هیدروژنهایی هستند که به کربن متصل‌اند.

از سوی دیگر ، انحلال پذيري اترها و الکلها در آب در یک حدود است. به عنوان مثال ، دی‌اتیل اتر و n-بوتیل الکل ، تقریبا به میزان 8 گرم در 100 گرم آب حل می‌شوند. ما انحلال‌پذیری الکلهای سبک در آب را به پیوند هیدروژنی بین مولکولهای آب و الکهای آب نسبت دادیم. انحلال‌پذیری اترها در آبها را نیز بر همین اساس می‌توان تبیین کرد: از طریق الکترونهای به اشتراک گذاشته نشده اکسیژن ، اتر می تواند با هیدروژن آب ، پیوند هیدروژنی تشکیل دهد.

تصویر

منابع صنعتی اترها

تعدادی از اترهای متقارن دارنده گروههای آلکیل کوچک در مقیاس بزرگ تولید می‌شوند و به‌عنوان حلال مورد استفاده قرار می‌گیرند. مهمترین آنها ، دی‌اتیل اتر است، یعنی همان حلال آشنایی که در استخراجها و در تهیه واکنشگرهای گرینیار مورد استفاده قرار می‌گیرند. نمونه‌های دیگری از این نوع اترها ، دی‌ایزوپروپیل اتر و دی-n-بوتیل اتر است.
این اترها در اثر واکنش الکلهای مربوطه با اسيد سولفوريك حاصل می‌شوند.

از آنجا که از هر جفت الکل ، یک مولکول آب حذف می‌شود، واکنش از نوع آب‌زدایی است. الکلها می‌توانند با نوع دیگری آب‌زدایی ، واکنش حذفی به آلکن تبدیل شوند. آبگیری از الکلها و بدست آوردن اتر به جای آلكن ، با انتخاب شرایط واکنش کنترل می‌شود. به‌عنوان مثال ، اتیلن با گرم کردن اتیل الکل با اسید سوفلوریک غلیظ تا 180 درجه سانتی‌گراد تهیه می‌شود.

دی‌اتیل اتر با گرم کردن مخلوطی از اتیل الکل و اسیدسولفوریک غلیظ تا 140 درجه سانتی‌گراد بدست می‌آید، در حالی‌که الکل دائما به مخلوط اضافه می‌شود تا فزونی مقدار آن حفظ شود. روش آبزدایی ، عموما به تهیه اترهای متقارن محدود است، چون ، همانگونه که انتظار می‌رود، ترکیبی از دو الکل ، معمولا می‌تواند مخلوطی از سه اتر بدهد.

تهیه اترها از طریق سنتز ویلیامسون

در آزمایشگاه ، سنتز اتر به روش ویلیامسون بدلیل تنوع‌پذیری آن ، بسیار مهم است و می‌توان آن را برای سنتز اترهای متقارن و نامتقارن بکار برد. در سنتز ویلیامسون ، یک آلکیل هالید (یا آلکیل هالید استخلاف شده) را با یک سدیم آلکوکسید ترکیب می‌کنند. به‌عنوان مثال:


R-X + Na-O-R1 -----> R-O-R1 + NaX

واکنش عبارت است از جایگزین شدن هسته دوستی یون هالید با یون آلکوکسید. این واکنش شباهت بسیار زیادی به تشکیل الکلها در اثر مجاورت آلکیل هالیدها با محلول آبی هیدروکسید دارد. از آنجا که الکوکسیدها و آلکیل هالیدها ، هر دو از الکلها تهیه می‌شوند، روش ویلیامسون نهایتا سنتز اتر از دو الکل است.
[+] نوشته شده توسط سیده سوسن میرصانع در 0:17 قبل از ظهر | | قالب بلاگفا
پنجشنبه یکم اسفند 1387

دید کلی

واکنشهای هسته‌ای ، چه خود بخودی و چه القایی ، منجر به تغییر انرژی می‌شوند. مقدار Q یا انرژی در یک واکنش هسته‌ای به مقدار انرژی آزاد شده یا جذب شده در طول واکنش مربوط است. انرژی پیوندی فرم ساده مقدار Q در واکنشهای خاصی است که با تشکیل یک هسته از نوکلئونهای تشکیل دهنده آن سر و کار دارد. این دو کمیت مشابه کمیتهای ترمودینامیکی آنتالپی یک واکنش (H∆) و آنتالپی تشکیل (Hf) می‌باشد.

تصویر

رابطه جرم - انرژی

در اوایل قرن بیستم ، "انیشتین" معادله جرم و انرژی را بیان نمود: E = mC²

می‌دانیم که در هر فرآیند ، مقدار کل ماده و انرژی ثابت است و ماده و انرژی ، قابل تبدیل به یکدیگر هستند. در فرآیندهای معمولی شیمیایی ، تبدیل ماده به انرژی به اندازه‌ای کوچک است که قابل اندازه گیری نیست. با وجود این ، این امر برای فرآیندهای هسته‌ای که با تغییرات بزرگتر انرژی در مقایسه با واکنشهای شیمیایی سر و کار دارند، صادق نیست.

در این قسمت ، رابطه‌های جرم - انرژی برای هسته‌ها و برای واکنشهای هسته‌ای مورد بحث قرار می‌گیرند.

تغییرات انرژی در واکنشهای هسته‌ای

مقدار Q برای یک واکنش هسته‌ای ، از طریق تفریق جرمهای کلیه محصولات واکنش از جرمهای کلیه واکنش دهنده‌ها و تبدیل (جرم) بدست آمده به واحدهای انرژی محاسبه می‌شود. همچنین ممکن است مقادیر اضافه جرم را به جای جرمهای حقیقی بکار برد.

Q = (مجموع جرمهای واکنش دهنده‌ها - مجموع جرمهای محصولات) (931.5Mev/dalton)

که در آن ، جرم بر حسب دالتن است.

فروپاشی مدار بسته برای محاسبات جرم - انرژی

جرمهای نوکلیدی تهیه شده تجربی در مورد بسیاری از نوکلیدها ، مخصوصا گونه‌های رادیواکتیو با عمر کوتاه قابل دسترسی نیستند. بنابراین ، از نظریه‌های غیر مستقیم یا تجربی برای محاسبه جرمهای نوکلیدی یا مقادیر انرژی مورد نیاز استفاده می‌گردد. یکی از روشهای غیر مستقیم بکار رفته برای این منظور ، دیاگرام فروپاشی مدار بسته است. چهار نوکلید مختلف در چهار گوشه یک مربع قرار داده می‌شوند. یکی از این نوکلیدها ، مادر سه نوکلید دیگر است.

معادله نیمه تجربی انرژی پیوندی

یک معادله نیمه تجربی برای محاسبه انرژیهای پیوندی برای نوکلیدهایی که جرم نوکلیدی آنها معلوم نبود، در سال 1935 بوسیله C.F.Von Weisacker پیشنهاد گردید. این معادله براساس مدل قطره مایع هسته می‌باشد و انرژی بستگی را به صورت مجموع پنج عبارت که تنها توابعی از Z و A هستند، بیان می‌کند.

ثابتهای معادله از طریق انطباق معادله تجربی با انرژیهای پیوندی بستگی معلوم تعیین شدند. برای هسته‌های با A>40 ، توافق بین مقادیر حقیقی حاصل از بکار بردن جرمهای نوکلیدی تجربی در معادله عادی BE و مقادیر پیش بینی شده غالبا بهتر از %1 است.

تصویر

دیاگرامهای سطح انرژی هسته‌ای

معادله نیمه تجربی همچنین می‌تواند به صورت تابعی درجه دوم از Z مجددا نوشته شود. چنانچه نموداری از این معادله به نحوی ترسیم گردد که انرژی پیوندی روی محور عمودی و Z روی محور افقی قرار گیرد، هذلولی تنهایی برای مقادیر ثابت A فرد و دو هذلولی برای مقادیر ثابت A زوج بدست می‌آیند. در این نمودار ، مقدار انرژی پیوندی در جهت پایین افزایش می‌باید. این هذلولیها ، هذلولیهای انرژی پیوندی ایزوبار یا دیاگرامهای سطح انرژی هسته‌ای نامیده می‌شوند.

واژه دیاگرام سطح به این دلیل اتلاق می‌گردد که این هذلولیها برشهایی در میان یک نمودار سه بعدی انرژی پیوندی ، عدد اتمی و تعداد نوترون هستند که دارای یک سطح موجی می‌باشند. چنین نمودارهای سه بعدی "سطح انرژی پیوندی" ، توضیح می‌دهند که هسته‌های پایدار در دره پایداری که از خط پایداری بتا تبعیت می‌کند، قرار می‌گیرند.

[+] نوشته شده توسط سیده سوسن میرصانع در 2:6 بعد از ظهر | | قالب بلاگفا
پنجشنبه یکم اسفند 1387

درجه آزادی عبارت است از ذکر تعداد حداقل متغیرهای شدتی که با معلوم بودن آنها بقیه متغیرهای شدتی سیستم ، معلوم و معین می‌باشد.


تصویر

دید کلی

برای رسیدن به مفهوم درجه آزادی ، باید ابتدا مفهوم فاز و جزء را بدانیم. کلمه فاز ، یک واژه یونانی و به معنی ظاهر است. یک فاز حالتی از ماده است که بطور کامل یکنواخت می‌باشد، این یکنواختی نه فقط از لحاظ ترکیب شیمیایی است، بلکه شامل حالت فیزیکی هم می‌شود (این کلمات از "گیبس" است.). از اینرو از فازهای جامد ، مایع و گاز یک ماده و از فازهای جامد مختلف آن ماده (مانند فسفر سیاه و فسفر سفید) سخن به میان می‌آوریم.

منظورمان از جزء ، گونه موجود در سیستم ، مانند حل شده و حلال در یک سیستم دوتایی می‌باشد. این دو ، یعنی فاز و جزء ، توسط قانونی به نام قانون فاز با درجه آزادی ارتباط پیدا می‌کنند.

تعداد فازها

تعداد فازها در سیستم را با P نشان می‌دهیم. یک گاز یا یک مخلوط گازی ، یک بلور و بالاخره دو مایع کاملا امتزاج پذیر ، همگی فقط یک فاز را تشکیل می‌دهند. گرچه ممکن است یخ به قطعات کوچکتری خرد شود، ولی فقط یک فاز دارد (P=1). محلول آب و یخ سیستم دوفازی می‌باشد (P=2)، گرچه مشخص کردن مرز بین این فازها مشکل است. آلیاژی از دو فلز امتزاج ناپذیر ، یک سیستم دوفازی می‌باشد (P=2)، در حالیکه اگر امتزاج پذیر باشند یک سیستم یک فازی است (P=1).

از این مثال استنباط می‌شود که قضاوت در این مورد که آیا سیستمی یک یا دو فلز دارد، همیشه آسان نیست.

تعداد اجزا

کمترین تعداد گونه‌های مستقلی که برای مشخص نمودن ترکیب تمام فازها در سیستم لازم است ، تعداد اجزا می‌نامیم و آن را با C نمایش می‌دهیم. اگر گونه‌های موجود در سیستم ترکیب نشوند، به آسانی می‌توان از این تعریف استفاده کرد. برای مثال ، آب خالص ، سیستم یک جزئی (C=1) و مخلوط آب - اتانول سیستم دو جزئی (C=2) است.

تعداد درجه آزادی

تعداد درجه آزادی را با علامت F نشان می‌دهیم. برای هر سیستم مطرح شده ، دو نوع کمیت وجود دارد. یک نوع ، کمیتهای توسعه پذیر یا ابعادی و نوع دیگر کمیتهای شدتی می‌باشند. G ، H ، E ، m ، V کمیتهای توسعه پذیر هستند و Em ، Vm ، X (کسر مولی) ، n ، ρ، T، P کمیتهای شدتی می‌باشند. معلوم شده است که در بررسی تعادلهای فازی ، استفاده از کمیتهای شدتی ، مناسب‌تر می‌باشند. لذا برای توصیف سیستم از کمیتهای شدتی استفاده می‌شود.

در توصیف سیستم نیاز نیست که همه متغیرهای شدتی ارائه شوند، چرا که به کمک روابط موجود و جداول تنظیمی با داشتن P و T کافی است تا سایر کمیتهای آن را بدست آورد. این حداقل تعداد را به نام "درجات آزادی سیستم" می‌گوییم. حال اگر ببینیم بین این حداقلها رابطه‌ای وجود دارد، باز هم می‌‌توان این حداقل را کاهش داد. مثلا در تعادلی بین آب و یخ ، تنها یک متغیر شدتی کافی است.

اگر سیستم بیش از یک جز داشته باشد، بعد از T و P ، کمیت غلظت مطرح می‌شود که بهترین نماد آن X ( کسر مولی ) است. پس متغیرهای شدتی مناسب برای تعادلهای فازی عبارتند از: P، X ، T.

تصویر

قانون فاز

در سیستم یک جزئی (C=1) ، اگر فقط یک فاز وجود داشته باشد (P=1) ، فشار و دما می‌توانند بطور مستقل تغییر کنند. اگر درجه آزادی یا F سیستم را به صورت تعداد متغیرهای شدتی تعریف کنیم که می‌تواند به صورت مستقل تغییر کند، بدون آنکه اختلالی در تعداد فازهای در حال سیستم بنماید، در این صورت F=2 است. "گیبس" در یکی از برازنده ترین محاسبات ترمودینامیک شیمیایی، قانون فاز را بدست آورد.

این قانون رابطه کلی بین درجه آزادی F ، تعداد اجزا C و تعداد فازهای در حال تعادل P برای هر سیستمی با هر ترکیبی برقرار می‌کند:


F = C - P + 2


 

[+] نوشته شده توسط سیده سوسن میرصانع در 1:55 بعد از ظهر | | قالب بلاگفا
پنجشنبه بیست و چهارم بهمن 1387
تمام فرآیندهای برگشت پذیر ، تمایل رسیدن به یک حالت تعادلی را دارند. برای یک واکنش برگشت پذیر ، حالت تعادل وقتی برقرار می‌شود که سرعت واکنش رفت برابر با سرعت برگشت باشد. در یک واکنش تعادلی ، از تقسیم ثابت سرعت واکنش رفت Kf بر ثابت واکنش برگشت ، Kr ، ثابت دیگری بدست می‌آید که ثابت تعادل شیمیایی ، K ، نامیده می‌شود.

مقدار عددی ثابت تعادل

مقدار عددی K با دما تغییر می‌کند. تعداد مجموعه غلظتها برای سیستمهای تعادلی این واکنش ، بی نهایت زیاد است. ولی در هر صورت برای کلیه سیستمهای تعادلی در دمای معین وقتی که غلظتهای A2 ، B2 ، AB در رابطه بالا قرار گیرند، همواره به یک مقدار K منجر می‌شوند. بطور کلی ، برای هر واکنش برگشت پذیر:


wW + xX ↔ yY + zZ




عبارت ثابت تعادل به صورت زیر است:


K = {Y}y{Z}z/{W}w{X}x


بطور قرار دادی ، جملات غلظت مواد طرف راست معادله شیمیایی در صورت کسر عبارت ثابت تعادل نوشته می‌شود.

ثابت تعادل Kc

ثابت تعادلی که در آن غلظتهای مواد بر حسب مول بر لیتر بیان می‌شوند، گاهی به صورت Kc نشان داده می‌شود. برای واکنش:


(H2(g) + I2(g) ↔ 2HI(g




مقدار Kc برای سیستمهای تعادلی در 425 درجه سانتیگراد عبارت است از:


Kc = {HI}2/{H2} {I2} = 54/5




مقدار عددی ثابت تعادل از طریق آزمایش تعیین می‌شود. اگر غلظتهای مواد (برحسب mol/lit) موجود در هر مخلوط تعادلی در 425 درجه سانتیگراد در عبارت Kc منظور شوند، نتیجه برابر با 54/5 خواهد شد. مخلوط تعادلی را می‌توان هم از موادی که در سمت راست معادله شیمیایی قرار دارند و هم از مواد سمت چپ این معادله و هم از مخلوط آنها تهیه کرد.

وضع تعادل و Kc

مقدار ثابت تعادل معیاری برای تشخیص وضع تعادل است. توجه داشته باشید که جملات مربوط به غلظت مواد طرف راست معادله شیمیایی در صورت کسر عبارت ثابت تعادل نوشته می‌شود.

نکات اساسی مربوط به عبارت ثابت تعادل

  1. جملات غلظت مواد سمت راست معادله شیمیایی در صورت عبارت Kc و جملات غلظت مواد سمت چپ معادله در مخرج عبارت Kc نوشته می‌شود.

  2. جملات غلظت مواد مایع و جامد خالص در عبارت ثابت تعادل نوشته نمی‌شود. ولی مقدار Kc این جملات را در بردارد.

  3. اگر در یک تعادل معین دما تغییر نکند، Kc ثابت می‌ماند ولی در دماهای مختلف، مقدار c تغییر می‌کند.

  4. مقدار Kc برای هر تعادل معینی، وضع آن تعادل را نشان می‌دهد. اگر مقدار Kc بزرگ باشد، واکنش از چپ به راست تقریبا کامل است و اگر مقدار Kc کوچک باشد، واکنش از راست به چپ کامل است. چنانچه مقدار Kc بسیار بزرگ و نه بسیار کوچک باشد، وضع تعادل بینابینی است.

ثابت تعادل Kp

فشار جزئی یک گاز ، اندازه‌ای از غلظت آن است. از اینرو ، ثابتهای تعادل واکنشهایی را که دارای مواد گازی هستند، می‌توان بر حسب فشارهای جزئی گازهای واکنش دهنده نوشت. اینگونه ثابت تعادلی را با Kp نشان می‌دهیم. برای تعادل:


(N2(g) + 3H2(g) ↔ 2NH3(g



 

Kp = {PNH3}2 / {PN2} {PH2}3


 

رابطه بین Kpو Kc

Kp = Kc (RT)∆n


واحدهای Kpو Kc

برای کارهای دقیق بایستی از ثابت های تعادل که از اندازه گیریهای ترمودینامیکی بدست می‌آیند، استفاده شود. ثابتهای تعادل ترمودینامیکی بر حسب فعالیت و نه بر حسب غلظت (mol/L برای Kc) یا فشار (atm برای Kp) بیان می‌شود. ولی در غلظتهای پایین و در فشارهایی تا چند اتمسفر می‌توان غلظتها و فشارها را با دقت قابل قبولی بکار برد.

در ضمن توجه شود که فعالیت دارای واحد نیست. زیرا فعالیت از تقسیم کردن غلظت یا فشار واقعی یک ماده بر غلظت یا فشار آن ماده در حالت استاندارد بدست می‌آید. در نتیجه ثابتهای تعادل ترمودینامیکی ، کمیتهای بدون واحد هستند. به همین علت ، تمام ثابتهای تعادل غالبا بدون واحد بیان می‌شوند.

[+] نوشته شده توسط سیده سوسن میرصانع در 2:22 بعد از ظهر | | قالب بلاگفا
پنجشنبه بیست و چهارم بهمن 1387

دید کلی

محلولها ، مخلوطهایی همگن هستند. محلولها را معمولا بر حسب حالت فیزیکی آنها طبقه بندی می‌کنند: محلولهای گازی ، محلولهای مایع و محلولهای جامد. بعضی از آلیاژها محلولهای جامدند؛ سکه‌های نقره‌ای محلولهایی از مس و نقره‌اند و برنج محلولی جامد از روی در مس است. هر آلیاژی محلول جامد نیست، بعضی از آلیاژها مخلوطهایی ناهمگن اند. محلولهای مایع متداولترین محلولها هستند و بیشترین کاربرد را در بررسیهای شیمیایی دارند. هوا هم مثالی برای محلولهای گازی می‌باشد.

ماهیت محلولها

در یک محلول ، معمولا جزئی که از لحاظ کمیت بیشترین مقدار را دارد، حلال و سایر اجزا را مواد حل شده (حل شونده) می‌گوییم. اما گاهی آسانتر آن است که جزئی از محلول را با آنکه مقدارش کم است، حلال بنامیم و گاهی اصولا اطلاق نام حلال و حل شونده به اجزای یک محلول (مثلا محلولهای گازی) چندان اهمیتی ندارد. بعضی از مواد به هر نسبت در یکدیگر حل می‌شوند.

امتزاج پذیری کامل از ویژگیهای اجزای تمام محلولهای گازی و بعضی از اجزای محلولهای مایع و جامد است. ولی غالبا، مقدار ماده ای که در حلال معینی حل می شود، محدود است. انحلال پذیری یک ماده در یک حلال مخصوص و در دمای معین، بیشترین مقداری از آن ماده است که در مقدار معینی از آن حلال حل می شود و یک سیستم پایدار به وجود می آورد.

غلظت محلول

برای یک محلول معین ، مقدار ماده حل شده در واحد حجم حلال یا در واحد حجم محلول را غلظت ماده حل شده می‌گوییم. مهمترین نوع غلظتها که در آزمایشگاه بکار می‌رود مولاریته و نرمالیته است. مولاریته عبارت است از تعداد مولهای یک ماده که در یک لیتر محلول وجود دارد. به همین دلیل آن را مول بر لیتر یا M/L می‌گیرند. نرمالیته یک محلول عبارتست از تعداد هم ارز گرمهای (اکی والان گرم های) ماده موجود در یک لیتر محلول. نرمالیته را با N نشان می‌دهند.

انواع محلولها

محلولهای رقیق

محلولهایی که غلظت ماده حل شده آنها نسبتا کم است.

محلولهای غلیظ

محلولهایی که غلظت نسبتا زیاد دارند.

محلول سیر شده

اگر مقدار ماده حل شده در یک محلول برابر با انحلال پذیری آن در حلال باشد، آن محلول را محلول سیر شده می‌نامیم. اگر به مقداری از یک حلال مایع ، مقدار زیادی ماده حل شونده (بیشتر از مقدار انحلال پذیری آن) بیفزاییم، بین ماده حل شده و حل شونده باقیمانده تعادل برقرار می‌شود. ماده حل شونده باقیمانده ممکن است جامد ، مایع یا گاز باشد. در تعادل چنین سیستمی ، سرعت انحلال ماده حل شونده برابر با سرعت خارج شدن ماده حل شده از محلول است. بنابراین در حالت تعادل ، غلظت ماده حل شده مقداری ثابت است.

محلول سیر نشده

غلظت ماده حل شده در یک محلول سیر نشده کمتر از غلظت آن در یک محلول سیر شده است.

محلول فراسیرشده

می‌توان از یک ماده حل شونده جامد ، محلول فراسیر شده تهیه کرد که در آن، غلظت ماده حل شده بیشتر از غلظت آن در محلول سیر شده است. این محلول ، حالتی نیم پایدار دارد و اگر مقدار بسیار کمی از ماده حل شونده خالص بدان افزوده شود، مقداری از ماده حل شده که بیش از مقدار لازم برای سیرشدن محلول در آن وجود دارد، رسوب می‌کند.

خواص فیزیکی محلولها

بعضی از خواص محلولها به دو عامل ، نوع ماده حل شده و غلظت آن در محلول بستگی دارند. این مطلب برای بسیاری خواص فیزیکی محلولها از جمله ، محلولهای آبی درست به نظر می‌رسد. برای مثال، محلول نمک طعام در آب بی رنگ پرمنگنات پتاسیم در آب، بنفش صورتی است (در اینجا نوع ماده حل شده مطرح است). افزون بر این ، می‌دانیم که هر چه بر محلول پرمنگنات آب بریزیم و آن را رقیقتر کنیم، از شدت رنگ آن کاسته می‌شود (اینجا غلظت محلول مطرح است).

یکی دیگر از خواص فیزیکی که به این دو عامل بستگی دارد، قابلیت هدایت الکتریکی محلول آبی مواد گوناگون است. چهار خاصه فیزیکی دیگر از محلولها وجود دارد که به نوع و ماهیت ذرات حل شده بستگی ندارد، بلکه فقط به مجموع این ذرات وابسته است. به عبارت دیگر ، تنها عامل موثر بر خواص محلول در اینجا ، غلظت است. چنین خواصی از محلول را معمولا "خواص جمعی محلولها" (خواص کولیگاتیو Colligative properties) می‌نامند و عبارتند از کاهش فشار بخار ، صعود نقطه جوش ، نزول نقطه انجماد و فشار اسمزی.

کاهش فشار بخار

وقتی یک حل شونده غیر فرار در یک حلال حل می‌شود، فشار بخار آن کاهش می‌یابد و مقدار کاهش به مقدار حل شونده بستگی دارد. هر چه میزان حل شونده بیشتر باشد، میزان کاهش در فشار بخار بیشتر است. برای مثال اگر دو ظرف را در نظر بگیریم که در آنها مقدار مساوی مایع وجود دارد که یکی محتوی مولکولهای آب خالص و دیگری محتوی محلول قند در آب است، بدیهی است که تعداد مولکولهای آب در واحد حجم از آب قند ، کمتر از آب خالص است. به همین نسبت ، تعداد مولکولهای آب در سطح آب قند ، نیز کمتر می‌باشد. بنابراین، نسبت مولکولهای پرانرژی آب که قادر به تبخیر از سطح آب قند هستند، کمتر می‌باشد و در نتیجه فشار بخار محلول کمتر می‌شود.

افزایش نقطه جوش

در اثر حل شدن مقداری حل شونده غیر فرار در یک حلال ، نقطه جوش آن افزایش می‌یابد. مقدار افزایش فقط به مقدار حل شونده بستگی دارد. برای مثال ، آب در شرایط متعارفی (دمای 25 درجه سانتیگراد و فشار بخار یک اتمسفر یا 760 میلی متر جیوه) در 100 درجه سانتیگراد می جوشد. اما اگر در آب، مقداری قند مثلا به غلظت یک مولال (یک مول در 1000 گرم آب) بریزیم، فشار بخار محلول آب قند به اندازه 14 میلی متر جیوه کاهش می‌یابد و در نتیجه محلول در 52/100درجه سانتیگراد می‌جوشد.

کاهش نقطه انجماد

وقتی یک حل شونده غیر فرار در یک حلال حل می‌شود، نقطه انجماد آن کاهش می‌یابد. بنابراین دمای انجماد محلولهای آبی همیشه کمتر از دمای انجماد آب خالص است. استفاده از این خاصیت در رادیاتور اتومبیل می‌باشد که برای جلوگیری از یخ زدن آب رادیاتور اتومبیل در زمستان ، به آن مقداری مایع به نام ضد یخ می‌افزایند. همچنین با اضافه کردن نمک (مانند کلرید سدیم) همراه با شن ریز روی آسفالت خیابانهای شهر ، هیدراته شدن یونهای نمکها مستلزم مصرف مقداری آب است که از ذوب شدن برف فراهم می گردد. بنابراین آب نمک غلیظی فراهم می‌شود که حتی در 20 درجه زیر صفر منجمد نمی‌شود.

فشار اسمزی

اگر در ظرف U شکلی ، حلال A از مخلوط حلال و حل شونده (B + A) به وسیله یک غشای نیمه تراوا ، جدا شود، چون فقط حلال از غشا عبور می‌کند، بعد از رسیدن به حالت تعادل ، ارتفاع مایع در قسمت (حاوی B + A) که حل شونده وجود دارد بالا می رود.
اگر به این ستون فشار وارد شود تا سطح مایع در دو طرف یکسان شود، این فشاراسمزی است که به علت حل شدن حل شونده غیر فرار در حلال ایجاد شده است.

به عکس فرآیند اسمز ، اسمز معکوس گویند که برای شیرین کردن آب استفاده می شود. همچنین برای تعیین جرم مولکولی پلیمرها ، پروتئینها و بطور کلی مولکولهای سنگین از فشار اسمزی استفاده می‌شود.

[+] نوشته شده توسط سیده سوسن میرصانع در 2:13 بعد از ظهر | | قالب بلاگفا
پنجشنبه بیست و چهارم بهمن 1387

مقدمه

برخی از مواد موجود در مواد زاید جامد شهری و صنعتی برای بازیافت و استفاده مجدد مناسبند. با توجه به این نکته می‌توان پی برد که کاغذ ، مقوا ، پلاستیک ، شیشه ، فلزات غیر آهنی و فلزات آهن مناسبترین مواد برای بازیابی‌اند و جز پلاستیکها بقیه مواد مذکور معمولا بازیابی می‌شوند.

مشخصات مواد

کاغذ ، مقوا ، پلاستیک ، شیشه ، فلزات آهنی و غیرآهنی از جمله مواد قابل بازیافت اصلی در مواد زاید جامد شهری هستند. در هر موقعیتی تعمیم برای بازیابی هر یک از این مواد معمولا با تکیه بر ارزیابی اقتصادی و ملاحظات محلی صورت می‌گیرد. در ارزیابی اقتصادی بازیابی مواد مشخصات مواد حائز اهمیت است.

سیستم‌های فرآیند و بازیافت

به منظور جداسازی اجزای دلخواه و انجام فرآیند بر مواد قابل اشتعال ، برای بازیابی مواد یا انرژی لازم است دیاگرامهای عملیاتی ترسیم شود. مواد سبک قابل احتراق معمولا به نام سوخت حاصل از دور ریز خوانده می‌شوند.

طراحی و ترسیم سیستم

طراحی و ترسیم تاسیسات فیزیکی که دیاگرام واحد فرآیند را تشکیل می‌دهند، زمینه اصلی اجزا عملکرد موفقیت آمیز چنین سیستم‌ها هستند. عوامل مهمی که در طراحی و ترسیم چنین سیستم‌هایی باید مورد توجه قرار گیرند عبارتند از:


  1. بازده و کارایی فرآیند
  2. اطمینان و انعطاف پذیری
  3. سادگی و عملکرد اقتصادی
  4. خوشایند بودن وضعیت ظاهری
  5. کنترل‌های زیست محیطی

بازیابی مواد حاصل از تبدیل بیولوژیکی مواد زاید جامد عبارتند از: کود ترکیبی ، متان ، پروتئینها و الکلهای مختلف و انواع مختلفی از ترکیبات واسطه‌ای عالی. تهیه کود ترکیبی و هضم بی‌هوازی دو فرآیندی هستند که بیش از همه فرآیندها توسعه یافته‌اند.

تولید کود ترکیبی (تبدیل هوازی)

اگر مواد آلی به استثنای پلاستیک ، لاستیک و چرم از مواد زاید جامد شهری جدا شده و در معرض تجزیه باکتریایی قرار گیرند، محصول نهایی به جا مانده پس از فعالیت باکتریایی هاضم و غیرهاضم ، کود ترکیبی یا هوموس خوانده می‌شود. کل فرآیند که در برگیرنده جداسازی و تبدیل باکتریایی مواد زاید جامد آلی است به نام تولید کود ترکیبی شناخته می‌شود. تجزیه مواد زاید جامد آلی با وجود اکسیژن و یا نبودن آن ممکن است به دو صورت هوازی یا بی‌هوازی صورت گیرد.

مراحل عملیات تهیه کود ترکیبی

  1. تهیه مواد زاید جامد
  2. تجزیه مواد زاید جامد
  3. تهیه محصولات و بازیابی
  • مرحله سوم شامل آسیاب کردن ، اختلاط با مواد افزودنی متعدد ، دانه بندی ، بسته بندی ، ذخیره سازی ، محل و در برخی از مواقع عرضه مستقیمبه بازار است.

هضم بی‌هوازی

هضم بی‌هوازی یا تخمیر بی‌هوازی فرآیندی است که برای تولید متان از مواد زاید بکار می‌رود. در اغلب فرآیندها که گاز متان از مواد زاید جامد در اثر هضم بی‌هوازی تولید می‌شود.

مراحل هضم هوازی

  • اولین مرحله عبارت است از آماده سازی جز آلی مواد زاید جامد برای هضم بی‌هوازی و این مرحله معمولا شامل مراحل دریافت ، تنظیم ، جداسازی و کاهش اندازه است.

  • مرحله دوم عبارت است از افزایش رطوبت و مواد مغذی ، بهم زدن ، تنظیم PH تا حدود 7/6 ، حرارت دادن دوغاب تا دمای بین 228 تا 333k (55 تا 60Cْ) و هضم بی‌هوازی در یک راکتور با جریان پیوسته که محتویات آن به خوبی برای مدت زمانی بین 5 الی 10 روز مخلوط می‌شوند.

  • مرحله سوم عبارتست از جمع آوری ، ذخیره سازی و در صورت نیاز جدا کردن اجزای گاز متصاعد شده در حین فرآیند هضم ، دفع مواد زاید هضم شده عملی است که الزاما باید صورت بگیرد.

بازیابی محصولات تبدیل گرمای

محصولات تبدیلی گرمایی که از مواد زاید جامد بدست می‌آیند، عبارتند از حرارت ، گازها ، تعداد متنوعی از روغنها و مقداری از ترکیبات آلی مربوط به یکدیگر.


  • احتراق مواد زاید: عناصر اصلی مواد زاید جامد عبارتند از: کربن ، هیدروژن ، اکسیژن ، نیتروژن و گوگرد در شرایط مطلوب در هنگام سوختن مواد زاید جامد محصولان نهایی گازی شامل CO2 (دی اکسید کربن) H2O (آب) N2 (نیتروژن) و SO2 (دی اکسید سولفور) می‌شوند.

خاکسترسازی همراه با بازیافت گرما

گرمای موجود در گازها حاصل از خاکسترسازی جامد را می‌توان در اثر تبدیل به بخار بازیابی کرد. گرمای اندکی که در گازهای پس از بازیافت گرما باقی می‌ماند را می‌توان آن برای پیشگرم کردن هوای احتراق آب جبرانی دیگ بخار یا سوخت مواد زاید جامد مورد مصرف قرار داد.

خاکسترسازهای بزرگ موجود

خاکسترسازهای بزرگ موجود به منظور استخراج گرما از گازهای احتراق بدون وارد کردن مقادیر اضافی هوا یا رطوبت می‌توان از دیگهای بخاری که سوخت آنها را مواد زاید تشکیل می‌دهند، استفاده کرد. در عمل خاکسترساز پیش تخلیه به اتمسفر (از دامنه دمایی 1250 تا 1375k (1800 تا ْ2000f ( تا دامنه دمایی 500 تا 800k (600 تا ْ1000f خنک می‌شوند. قطع نظر از تولید بخار ، استفاده از سیستم دیگ بخار در کاهش حجم گازهای تحت فرآیند در تجهیزات کنترل آلودگی هوا کارساز است.

خاکسترسازهایی که آب در دیواره آنها جریان دارد.

در این خاکسترسازها ، دیواره‌های داخلی محفظه احتراق دارای لوله‌های دیگ بخار است که بطور عمودی قرار گرفته‌اند و در قسمتهای پیوسته بر یکدیگر جوش خورده‌اند. هنگامی که به جای مواد نسوز از دیواره‌های دارای لوله‌های جریان آب استفاده می‌شود. این سیستم نه تنها برای باز یافت بخار کار آمد است بلکه در کنترل دمای کوره بدون وارد ساختن هوای اضافی نیز به مقدار زیادی موثر است.

استفاده از سوختهای حاصل از مواد زاید

این قبیل سوختها که معمولا به شکل پودر هستند در دیگهای باز صنعتی در حال حاضر با استفاده از زغال سنگ یا نفت برای تولید انرژی استفاده می‌شوند، بطور مستقیم قابل سوختن می‌باشند. سوختهای حاصل از مواد زاید جامد همراه با زغال سنگ یا نفت نیز قابل سوختن هستند. با استفاده از ماشین‌های مکعب‌ساز کشاورزی می‌توان سوختهای تراکم حاصل از مواد زاید جامد تولید کرد. سوختهای مکعبی شکل برای استفاده در تعدادی از فرآیندهای تبدیلی خاکسترسازی و یا تبدیل به گاز و پیرولیز مناسبند.

تبدیل به گاز

فرایند تبدیل به گاز عبارت است از احتراق جزیی از سوخت کربنی به منظور تولید یک گاز سوختی قابل احتراق که مقدار منو اکسید کربن و هیدروژن در آن زیاد است. دستگاه تبدیل کننده گاز اساسا یک خاکستر ساز است که تحت شرایط احیا کننده عمل می‌نماید. گرمای لازم برای ادامه فرایند از واکنشهای گرمازا بدست می‌آید در حالیکه اجزای قابل احتراق گاز دارای انرژی کم عمدتا از واکنشهای گرماگیر بدست می‌آیند. وقتی که یک دستگاه تبدیل کننده گاز در فشار اتمسفر با استفاده از مواد به عنوان اکسید کننده عمل می‌کند، محصولات نهایی فرایند به گاز عموما گازهای کم انرژی هستند که از نظر حجمی حاوی CO2%100 و CO20% و H215% و CH42% می باشند که مابقی آن را گاز N و پودر غنی از کربن تشکیل می‌دهد.

تجزیه مواد به کمک حرارت (پیرولیز)

پیرولیز فرآیندی به شدت گرماگیر است به همین دلیل عبارت تقطیر مخرب نیز به صورت ترازو با پیرولیز بکار می‌رود مشکل فیزیکی مواد زاید جامد تحت پیرولیز ، می‌تواند از مواد زاید خام خرد نشده تا مواد زاید کاملا پودر شده باقی مانده پس از دو مرحله خرد کردن و مواد تغییر نماید. خواص سه جز اصلی حاصل ازپیرولیز عبارتست از:


  1. جریانی از گاز که عمدتا حاوی هیدروژن ، متان ، منو کسید کربن و دی اکسید کربن و گازهای دیگر در ارتباط با خواص آلی مواد پرولیز شونده می‌باشد.

  2. جزئی از قیر و یا جریان روغن که در دمای متعارف محیط مایع است و دارای ترکیباتی نظیر اسید استیک ، استون و متانل می‌باشد.

  3. پودری که از کربن تقریبا خالص همراه با موادی بی‌اثر داده شده در فرآیند تشکیل شده است.
[+] نوشته شده توسط سیده سوسن میرصانع در 2:7 بعد از ظهر | | قالب بلاگفا
پنجشنبه بیست و چهارم بهمن 1387

مقدمه کلی

منظور از آلودگی ورود عناصر و ترکیبات تازه به محیط و یا تغییر نسبت عناصر و ترکیباتی است که در ساختار طبیعی محیط شرکت دارند. مثلا سرب در ترکیب طبیعی اتمسفر وجود ندارد، ورود آن در اتمسفر ، نوعی آلودگی است. CO2 ترکیبی است که با نسبتی مشخص در ترکیب اتمسفر شرکت دارد. افزایش نسبت این ترکیب در جو ، نوعی آلودگی تلقی می‌شود. خطرناکترین آلودگیهای محیط ، ناشی از کاربرد موادی هستند که بشر در طول یک سده گذشته و بویژه در بیست و سی سال اخیر به منظور مبارزه با حشرات ، بیماریهای انگلی گیاهان و همچنین حشرات ناقل بیماریهای حیوانی و انسانی بکار برده است.

همچنین استفاده اسراف آمیز از سوختهای فسیلی ، کاربرد مواد شیمیایی بسیار متنوع در صنعت استخراج و تصفیه فلزات و صنایع دیگر بویژه آزمایشهای اتمی در جو زمین ، عناصر و ترکیبات جدیدی را وارد محیط کرده‌اند که قبلا اکوسیستم طبیعی کره زمین با آنها روبرو نبوده است.

طبقه‌بندی آلاینده‌ها

تمامی آلاینده‌های هوا را می‌توان بر اساس منشاء ترکیب شیمیایی و حالت فیزیکی‌شان طبقه‌بندی نمود. این طبقه‌بندیها برای تنظیم بحث و بررسی در زمینه عوامل آلودگی هوا بکار می‌روند. آلاینده‌ها بسته به منشاءشان به دو گروه اولیه و ثانوی تقسیم می‌شوند. آلاینده‌های اولیه از قبیل دی‌اکسید سولفورها (SO2 ) ، اکسیدهای نیتروژن ( NO2 ) و هیدروکربنها (HC) ، آن دسته از آلاینده‌ها هستند که مستقیما وارد اتمسفر شده‌اند و به همان شکل آزاد شده نیز در اتمسفر یافت می‌شوند. آلاینده‌های ثانوی نظیر اوزون (O3 ) و پراکسی استیل نیترات (PAN) آن دسته از آلاینده‌ها هستند که در اتمسفر توسط یک واکنش فتوشیمیایی در اثر هیدرولیز و یا اکسیداسیون تشکیل می‌شوند.

تصویر


ترکیب شیمیایی آلاینده‌ها

آلاینده‌ها اعم از گروه اولیه و ثانوی می‌توانند بسته به ترکیب شیمیایی‌شان به دو گروه آلی یا معدنیآلدئیدها و کتونها دارای اکسیژن ، کربن و هیدروژن هستند. سایر ترکیبات آلی مهم در مورد آلودگی هوا عبارتند از: کربوکسیلیک اسیدها ، الکلها ، اترها و استرها و آمین‌ها و ترکیبات آلی گوگردار. مواد معدنی یافت‌شونده در هوای غیر آلوده عبارتند از کربن ، منوکسید (CO) ، دی‌اکسید کربن (CO2)، کربناتها ، اکسیدهای سولفور ، اکسیدهای نیتروژن ، اوزون ، هیدروژن فلوراید و هیدروژن کلراید. تقسیم شوند. ترکیبات آلی حاوی کربن و هیدروژن و بسیاری از آنها دارای عناصری مانند اکسیژن ، نیتروژن ، گوگرد و فسفر می‌باشند. هیدروکربنها ، ترکیبات آلی هستند که تنها دارای کربن و هیدروژن‌اند.

طبقه‌بندی آلاینده‌ها بر حسب حالت ماده

ذرات آلاینده‌ها

عبارتند از جامدات و مایعاتی که شامل غبار ، دودهای غلیظ ، دود ، خاکستر ، غبار مه آلود و اسپری هستند. تحت شرایط مناسب ذرات آلاینده‌ها از اتمسفر جدا و ته‌نشین می‌شوند.

آلاینده‌های گازی

آلاینده‌های گازی که سیالهای بی‌شکل‌اند، کاملا فضای آزاد شده در آن را اشغال می‌کنند و بسیار شبیه به هوا عمل نموده ، از اتمسفر جدا نمی‌شوند. در میان آلاینده‌های معروف گازی از اکسیدهای کربن ، اکسیدهای سولفور ، اکسیدهای نیتروژن ، هیدروکربنها و اکسید کننده‌ها می‌توان نام برد.

طبقه‌بندی ذرات

  1. خواص فیزیکی که عبارتند از اندازه ، شکل ، ته‌نشین شدن و کیفیت نوری
  2. خواص شیمیایی که عبارتند از ترکیبات آلی و معدنی
  3. خواص بیولوژیکی به صورت باکتریها ، ویروسها ، هاگها و غیره

نحوه تشکیل ذرات

ذرات را می‌توان بر حسب نحوه تشکیل به صورت غبار ، دود ، دود غلیظ ، دود حاصل از خاکستر ، غبار مه آلود یا اسپری طبقه‌بندی نمود.

غبار

غبار عبارتست از ذرات کوچک جامد بوجود آمده از خرد شدن جرمهای بزرگتر در حین فرآیندهایی نظیر خرد کردن ، آسیاب کردن یا انفجار که ممکن است بطور مستقیم و یا غیر مستقیم در اثر بکار گیری موادی از قبیل زغال سنگ ، سیمان یا دانه‌ها وارد اتمسفر شوند.

دود

دود از ذرات ریز جامد از احتراق ناقص ذرات آلی نظیر زغال سنگ ، چوب یا تنباکو که عمدتا از کربن و سایر مواد قابل احتراق تشکیل یافته‌اند، تشکیل می‌شود.

دود غلیظ

دود غلیظ از ذرات جامد ریز از مایع شدن بخارات مواد جامد تشکیل می‌شود. دود غلیظ ممکن است در اثر تصعید ، تقطیر ، تکلیس شدن یا فرآیندهای ذوب فلزات بوجود آید.

دود ناشی از خاکستر

دود ناشی از خاکستر از ذرات غیر قابل احتراق ریزی که در گازهای حاصل از احتراق زغال سنگ بوجود می‌آید تشکیل یافته است.

تصویر


غبار مه آلود

غبار مه آلود از ذرات مایع یا قطرات تشکیل شده در اثر مایع شدن بخار ، پراکندگی یک مایع یا انجام یک واکنش شیمیایی بوجود می‌آید.

  • ذرات آلی موجود در اتمسفر: فنلها ، اسیدهای آلی و الکلها
  • معروفترین ذرات معدنی موجود در اتمسفر: نیتراتها ، سولفاتها و فلزات آهن ، سرب ، منگنز ، روی و وانادیم

منابع تولید ذرات

ذرات ممکن است گرد گیاهان ، هاگها ، باکتریها ، ویروسها ، تک یاخته‌ایها ، قارچها و بقایای زنگ زدگی و غبار ناشی از فعالیتهای آتشفشانی و یا مواد مضر به سلامت انسانها (دود ناشی از خاکستر ، دود ، دوده‌ها ، اکسیدهای فلزی و نمکها ، فلزات روغنی یا قیری ، قطرات اسیدی ، سیلیکاتها و سایر غبارهای معدنی و دودهای غلیظ فلزی) باشند.

استانداردها و کنترل ذرات

اگر چه کنترل ذرات در محل تولید آنها یا به کمک رقیق سازی انجام پذیر است، اما این اصل که رقیق کردن راه حل مشکل آلودگی است، دارای کاربرد نیست و نمی‌توان از آن به عنوان یک روش کنترل کننده مفید نام برد. تنها روش قابل قبول کنترل در محل تولید کننده آلودگی و متکی به اصول ته‌نشین سازی ، سانتریفوژ ، فشرده نمودن ، فیلتراسیون بارهای الکتریکی می‌باشند.

[+] نوشته شده توسط سیده سوسن میرصانع در 1:47 بعد از ظهر | | قالب بلاگفا
پنجشنبه بیست و چهارم بهمن 1387

حفظ کیفیت هوا عبارتی است که تمامی عملیات لازم را برای کنترل کیفیت اتمسفر توصیف می‌کند.

مقدمه

مقررات کنترل و سیاستهای کنترلی ، مجوز قانونی جهت اجرای سیاستهای کنترل ابداعات جدید ، مربوط به گازهای متصاعد شده در اتمسفر ، شبکه نظارت بر اتمسفر ، سیستم اطلاعات حفاظتی ، تاسیس سازماندهی نهادها ، سیستم مربوط به تجزیه و تحلیل شکایات درباره آلودگی هوا و عملیات نمونه‌برداری از گازهای خازج شونده از دودکش ، از جمله عناصر ضروری حفظ کیفیت هوا به شمار می‌روند.

کیفیت هوای اتمسفر و استانداردهای مربوط به گازهای آزاد شده شامل استانداردهای اول که متکی بر معیارهای کیفیت هوا ، ایمنی و حفظ سلامت جامعه را در دامنه‌ای گسترده رعایت نموده است در حالی که استانداردهای ثانوی که آنها نیز متکی بر معیارهای کیفیت هوا هستند جهت حفظ رفاه عموم از قبیل کارخانه‌ها ، حیوانات ، اموال و مواد پی‌ریزی شده‌اند. برای پایین آوردن آلودگی به کمتر از استانداردهای کیفیت هوای اتمسفر ، استانداردهای ملی مواد متصاعد شده با تکیه بر در دسترس بودن تکنولوژی کنترل وضع گردیدند.

شاخصهای کیفیت هوا

آژانس حفاظت محیط زیست ، شورای کیفیت محیط زیست ، در توسعه شاخص استانداردهای آلاینده (PSI) به منظور گردآوری عوامل پیچیده‌ای که مجموعا کیفیت هوا را بوجود می‌آورند، با یکدیگر همکاری کرده و این شاخص اندازه‌ گیریهای مربوط به هوا را برای 5 معیار اصلی آلاینده‌ها از صفر تا 500 درجه بندی می‌نمایند. آلاینده‌های مربوط عبارتند از: منو اکسید کربن ، دی اکسید سولفور ، کل ذرات معلق اکسید کننده‌های فتوشیمیایی یا ازن و دی اکسیدکربن اگر غلظت هر یک از آلانیده اصلی بیش از مقدار پیش بینی شده برای کیفیت هوا در هر ایستگاه کنترل آلودی باشد در آن روز معین ، کیفیت هوا درناحیه مورد نظر ناسالم است.

حتی اگر غلظت چها آلاینده اصلی دیگر پایینتر از حد استاندارد ملی باشد. تنها هنگامی که اندازه گیری مربوط به همه پنج آلاینده‌ها دارای مقدار شاخص یا کمتر از (مقداری که کمتر از نصف حد تعیین شده توسط استاندارد است) باشد، اصطلاحا گفته می‌شود که کیفیت هوا خوب است.

اعمال استانداردها

اعمال استانداردهای کیفیت هوای اتمسفر ، استانداردهای آزاد شدن گازها برای صنایع جدید و ساکن موجود و استانداردهای آزاد شدن موادی برای آلاینده‌های خطرناک وظیفه نهادهای ایالتی شمرده می‌شود. علاوه بر کنترل منابع ساکن موجود نهادهای ایالتی کنترل آلودگی هوا نیز باید به بررسی و مرور طرحهای ارائه شده برای توالی منابع جدید ساکن بپردازند. نهادهای ایالتی برای رفع مقررات ضروری طرح‌ریزی شده جمعیت جلوگیری از رسیدن غلظتهای آلاینده‌ها در اتمسفر به حدودی که برای سلامت انسان خطرناک هستند، دارای اختیار و قدرت می‌باشند.

در وهله اول که به آن مرحله هوشیاری گفته می‌شود. اولین مرحله کنترل آغاز می‌شود. در مرحله هشدار بر عملکرد دستگاههای خاکستر ساز و وسائط نقلیه محدودیتهایی اعمال می‌شودند. در مرحله سوم ، علاوه بر تعیین حد اضطراری بر اجاقهای سرباز ، عملکرد خاکسترسازها ، واحدهای صنعتی و اتومبیلها کنترلهای شدید اعمال می‌شود. نهادهای ایالتی باید به کنترل انتشار گازهای آلانیده خطرناک بپردازد یعنی آن دسته از آلانیده‌هایی که می‌توانند در افزایش مرگ و میر یا شیوع بیماریهای جدی ناتوان کننده برگشت ناپذیر نقش داشته باشند.ایالتها باید به رعایت استانداردهای ملی مواد آزاد شده در اتمسفر ، وضع شده برای پنج ماده خطرناک (پنبه نسوز ، بریلیم ، جیوه ، وینیل کلراید و بنزن) ملزم باشند.

منبع نشر آلاینده

عبارتست از روشن کردن منابع آلودگی هوا در یک ناحیه مشخص و تعریف انواع و مقدار آلودگی که این منابع ممکن است بوجود آورند، نشر آلاینده‌ها ، تناوب ، تداوم و مقدار نسبی نشر آلودگی مربوط به هر منبع. پنج آلانیده صلی هوا که معمولا در یک منبع انتشار آلودگی در نظر گرفته می‌شوند، عبارتند از: منو اکسید کربن ، هیدروکربنها ، اکسیدهای نیتروژن و اکسیدهای گوگرد. با این وجود اندازه گیری اکسید کننده‌های فتوشیمیایی (یا ازن) در شاخصهای استاندارد آلاینده‌های جایگزین اندازه گیری هیدروکربنها در بسیاری از منابع نشر آلودگی شده است.

منابع نشر آلودگی

منابع نشر آلودگی عبارتند از: حمل ونقل وسائط نقلیه یا منابع متحرک احتراق ، منابع ساکن احتراق ، فرآیندهای صنعتی ، دفع مواد زاید جامد و فعالیتهای متفرقه. آگاهیهای مربوط به کمیت و کیفیت موارد مورد استفاده فرآیند شده سوخته شده در چهار گروه منبع را از طریق پرسشنامه‌ها ، تماس مستقیم با مدیران ، اتاقهای بازرگانی یا سازمانهای تحقیقاتی ، مطبوعات و مجلات ، منابع اطلاعاتی ، آژانسهای ایالتی و یا منابع مطلع می‌توان بدست آورد. با جمع آوری اطلاعات از راههای مذکور می‌توان از این آگاهیها با توجه به عامل نشر برای تعیین آلودگی در یک جامعه مشخص و همچنین برای محاسبه سرعت نشر آلاینده استفاده کرد.

[+] نوشته شده توسط سیده سوسن میرصانع در 1:35 بعد از ظهر | | قالب بلاگفا
پنجشنبه بیست و چهارم بهمن 1387

مقدمه

اتمسفر مانند نهر یا رودخانه دارای فرآیندهای طبیعی است که در تمیز کردن آن نقش دارند. بدون چنین فرآیندهایی تروپوسفر سریعا به محیطی نامناسب برای زیست بشر تبدیل خواهد شد. پراکندگی ، ته‌نشینی گرانشی ، لخته سازی ، جذب (همراه با شستشو و واشویی) ، شستشو توسط باران و جذب سطحی از جمله مهمترین مکانیسمهای طبیعی آلاینده‌ها در اتمسفر به شمار می‌روند.


img/daneshnameh_up/9/9a/earthy_sick.gif




فرآیندهای پاکسازی اتمسفر

پراکندگی

پراکندگی آلاینده‌ها توسط جریانهای باد ، غلظت آلاینده‌ها را در هر جایی کاهش می‌دهد.

ته‌نشینی گرانشی

یکی از مهترین مکانیسمهای طبیعی در جداسازی ذرات از اتمسفر بویژه ذراتی که بزرگتر از 20µm هستند شمرده می‌شوند.

لخته سازی

ته‌نشینی گرانشی در چندین فرآیند دیگر پاکسازی طبیعی اتمسفر نیز نقش مهمی دارد به عنوان مثال ذرات کوچکتر از 0.1µm به کمک لخته‌سازی قابل ته‌نشین‌ هستند. در این پدیده ذرات بزرگتر بصورت گیرنده‌های ذرات کوچکتر عمل می‌کنند. دو ذره با یکدیگر برخورد و اتصال پیدا کرده تشکیل یک واحد می‌دهند. این فرآیند تا تشکیل یک ذره لخته‌ای کوچک ادامه می‌یابد، تا آنجا که این لخته برای ته‌نشین شدن به اندازه کافی بزرگ و سنگین شود.

جذب ذرات

در فرآیند طبیعی جذب ذرات یا آلاینده‌های گازی در باران یا مه تجمع حاصل کرده همراه رطوبت ته‌نشین می‌شوند، این پدیده که به نام شستشو نامیده می‌شود در قسمت پایینتر از سطح ابرها رخ می‌دهد پتانسیل لازم برای شستشوی ذرات و گازها بستگی به تحقیقات اخیر نشان داده‌اند که برای ذرات دارای قطر کوچکتر از 1µm فرآیند شستشو موثر نخواهد بود.

گازها ممکن است بدون تغییر شیمیایی حل شوند و یا اتصال دارد در برخی مواقع با آب باران وارد واکنش شیمیایی شوند مانند گاز SO2 که به سهولت در باران حل می‌شود و همراه با قطرات باران پایین می‌آید با این وجود SO2 ممکن است با آب باران واکنش نشان داده ایجاد غبارهای H2SO3 (اسید سولفورو) یا H2SO4SO2 اولیه دارای اثرات زیانبار بیشتری هستند.

شستشو در اثر بارش

در این حالت شستشو در سطح پایینتر از ابرها اتفاق می‌افتد و هنگامی که قطرات سقوط کننده باران آلاینده‌ها را جذب می‌کنند در داخل ابرها پدیده شستشو صورت می‌گیرد. بدین ترتیب که ذرات کوچکتر از ابعاد میکرون بصورت هسته‌های میعان که در اطراف آنها قطرات آب تشکیل می‌شوند، عمل می‌کنند. این پدیده در نواحی شهری موجب افزایش بارندگی و تشکیل مه می‌شود.

جذب سطحی

عمدتا در لایه اصطکاکی اتمسفر یعنی در نزدیکترین لایه به سطح زمین انجام می‌گیرد. در این پدیده آلاینده‌های گازی ، مایع یا جامد جذب یک سطح شده پس از غلیظ شدن در همان سطح باقی می‌مانند. سطوح طبیعی از قبیل خاکها ، صخره‌ها ، برگها و علفها قادر به جذب و نگهداری آلاینده‌ها هستند. ذرات ممکن است با سطوح جذب توسط ته‌نشینی گرانشی یا اثر اینرسی که در طی آن ذرات آلاینده‌های گازی در اثر جریانهای باد به سطوح منتقل می‌شوند تماس یابند. اثر اینرسی برای ذراتی در دامنه ابعادی بین 10 تا 15µm سطوح کوچک به تعدد مانند علفها و برگهای درختان نسبت به سطوح بزرگتر به منظور جداسازی ذرات بیشتر است.

img/daneshnameh_up/c/c2/devils_tower.gif img/daneshnameh_up/1/16/nature_030.gif




دستیابی به کنترل آلاینده‌ها

برای دستیابی به کنترل آلاینده‌های گازی و ذرات دامنه‌ای گسترده ، دو راه وجود دارد:

  1. کاهش غلظت آلاینده در اتمسفر
  2. کنترل آلاینده‌ها در منبع تولید آنها

رقیق سازی

رقیق ساختن در اتمسفر با استفاده از دودکشهای بلند امکانپذیر است. دودکشهای بلند می‌توانند در لایه وارونگی نفوذ کرده ، آلاینده‌ها را به گونه‌ای پراکنده سازند که غلظت آلاینده‌ها در سطح زمین تا مقدار زیادی کاهش یابد. رقیق سازی در بهترین حالت خود عبارتست از یک وسیله کوتاه مدت به منظور کنترل آلودگی و در بدترین حالت خود وسیله‌ای است برای انتقال آثار ناخواسته آلاینده‌ها به مناطق دور دست.

کنترل در منبع مولد آلاینده‌ها

به منظور کنترل آلودگی هوا در دامنه‌های بسیار وسیع تا نقاط دوردست ، کنترل این مواد در منبع تولیدشان مطلوبتر و موثرتر از رقیق سازی است. در وهله اول چنین به نظر می‌رسد که اولین و موثرترین روش جلوگیری از تولید آلاینده‌ها باشد در مورد آلاینده‌های تولید شده در اثر فرآیندهای احتراقی ، جایگزین کردن یک منبع انرژی می‌تواند از تولید آلاینده‌ها جلوگیری کند. روشهای باقیمانده برای کنترل آلاینده‌ها در منبع می‌تواند موجب کاهش انتشار آلاینده‌ها شود، اما نمی‌تواند سبب حذف کامل موجود به عنوان مثال اتومبیلی که دارای یک فیلتر کثیف هوا ، به یک سیستم نامناسب برای تهویه موتور ، عملکرد نادرست تنظیم دور موتور و ... نسبت به اتومبیلی که با بهترین بازده کار می‌کند، آلاینده‌های بیشتری را از خود منتشر می‌سازد.

تغییر فرآیند مورد استفاده همچنان روش دیگر برای کنترل انتشار آلاینده‌ها در منبع تولیدشان بکار می‌رود. به عنوان مثال جایگزین کردن کوره‌های باز با کوره‌های اکسیژنی کنترل شده یا کوره‌های الکتریکی و یکی دیگر از روشهایی که در کنترل آلاینده‌های هوا در منبع تولید آنها دارای وسیعترین کاربرد است، عبارت است از نصب تجهیزات کنترلی طراحی شده بر طبق برخی از اصول اساسی که توسط آنها مکانیسمهای طبیعی حذف آلاینده ها عمل می‌کنند.

[+] نوشته شده توسط سیده سوسن میرصانع در 1:28 بعد از ظهر | | قالب بلاگفا
پنجشنبه بیست و چهارم بهمن 1387

مقدمه

اگر چه احتراق یا خاکسترسازی از منابع اصلی آلودگی هوا هستند ، اما در فرآیند کنترل آلودگی هوا ، هدف از آن عبارت است از تبدیل آلاینده‌های هوا به دی‌اکسید کربن بی‌خطر یا آب. دستگاه احتراق به منظور کنترل نشر آلاینده‌های هوا در جهت متمایل ساختن واکنشهای اکسیداسیون تا حد ممکن به سوی کامل شدن و باقی گذاشتن حداقل ترکیبات سوخته نشده طراحی می‌شود.

برای دستیابی به بازده مناسب در احتراق تلفیق مطلوب چهار عامل اصلی اکسیژن ، دما ، آشفتگی و زمانمنوکسید کربن ، محصولات فرعی احتراقند، در حالی‌که با وجود اکسیزن کافی ، منوکسید کربن ، محصول فرعی احتراق خواهد بود. اگر چه احتراق به محض آنکه یک ماده به نقطه شروع سوختن می‌رسد آغاز می‌شود، اما برای کنترل آلودگی هوا لازم است دما در نقطه خاکسترسازی ، جایی که گرمای بوجود آمده در اثر واکنش ، بیشتر از گرمای به هدر رفته در محیط اطراف است نگاهداشته شود.

برای مخلوط نگاه داشتن اکسیژن با مواد قابل احتراق ، لازم است آشفتگی توسط پره‌ها یا نازلهای تزریق بوجود آید.
ضروری است. در حین احتراق ، مقدار اکسیژن قابل دسترسی ، تعیین کننده محصولات نهایی بدست آمده است.

طبقه بندی روشهای احتراق آلاینده‌ها

برحسب آلاینده‌هایی که قرار است اکسید شود، روشهای احتراق شعله مستقیم ، ممکن است احتراق گرمایی یا احتراق کاتالیستی برای کنترل آلودگی هوا بکار روند.

احتراق شعله مستقیم

در احتراق مستقیم ، گازهای زاید مستقیما در یک دستگاه احتراقی همراه و یا بدون وجود سوخت کمکی سوزانده می‌شوند. در برخی مواقع ارزش حرارتی و اکسیژن موجود در گازهای زاید به‌منظور ارائه سوختن گازها کافی‌است در برخی موارد دیگر وارد کردن هوا و یا افزودن مقدار اندکی سوخت کمکی مخلوط گازی را به نقطه احتراق خود می‌رساند. این دستگاهها معمولا واحدهای احتراقی انتها آزاد هستند که در محیط بازو در پایان یک جریان گاز زاید در قسمت فوقانی یک دودکش قرار گرفته‌اند و به‌منظور اطمینان یافتن از سوختن پیوسته مجهز به شمعک‌هایی می‌باشند.

گر چه سوختن شعله یک روش نسبتا اطمینان بخشی برای دفع مقادیر زیادی از گازهای زاید شدیدا قابل احتراق به شمار می‌روند، ولی این روش ایده‌آل نیست. در صورتی که از گرمای حاصل از این سیستم‌ها به عنوان گاز بویلرها به سایر عملیات استفاده نشود، مقادیر عظیمی از انرژی حرارتی که با در نظر گرفتن کاهش منابع سوخت فسیلی دارای اهمیت است، به هدر خواهند رفت.

فرآیندهای احتراق شعله مستقیم در صورتی که گاز زاید به خودی خود تامین کننده بیش از 50 درصد کل ارزش حرارتی مورد نیاز برای خاکسترسازی می‌باشد، از لحاظ اقتصادی مقرون به صرفه خواهد بود.

احتراق گرمایی

در صورتی که غلظت گازهای آلاینده قابل احتراق برای انجام احتراق شعله مستقیم بسیار اندک باشد، یک خاکستر ساز گرمایی یا پس سوزی می‌تواند مورد استفاده قرار گیرد. بطور کلی گاز زاید غالبا بوسیله یک مبدل حرارتی پیشگرم می‌شود. مبدل حرارتی از گرمای ایجاد شده بوسیله خاکسترساز گرمایی استفاده می‌کنند. گاز پیشگرم شده به قسمت احتراقی که مجهز به یک مشعل دارای سوخت کمکی است، رانده می‌شود.

دمای عملیاتی بستگی به ماهیت آلانیده‌ها در جریان گاز زاید دارد. دماهای متداول بین 583 تا 927 درجه سانتی‌گراد تغییر می‌کنند، در حالیکه بعضا این دما تا 1093 درجه سانتیگراد نیز افزایش می‌یابد. از آنجا که سوختن ناقص منجر به ایجاد محصولات فرعی ناخواسته (عمدتا منوکسید کربن) می‌شود، زمان ، دما ، آشفتگی و جریان اکسیژن باید با دقت کنترل شوند. این واحدها در کنترل نشر آلاینده‌های گازی صنایعی مانند تهیه قهوه و دودی کردن گوشت و ماهی از اهمیت ویژه‌ای برخوردارند.

تصویر


احتراق کاتالیستی

احتراق یا خاکسترسازی کاتالیستی روش دیگری است که در مواقعی که مواد قابل احتراق در گاز زاید برای ایجاد شعله مستقیم ناکافی است، مورد استفاده قرار می‌گیرد. کاتالیست ، سرعت اکسیداسیون را ، بی‌آنکه خود تحت واکنش شیمیایی قرار بگیرد، افزایش می‌دهد، بدین ترتیب زمان توقف لازم را برای تکمیل فرآیند خاکسترسازی کاهش می‌دهد. خاکسترسازی گرمایی زمان اقامت بین 20 تا 50 برابر بیشتر از زمان توقف در خاکسترسازهای کاتالیستی است.

ساختمان یک خاکستر ساز کاتالیستی

معمولا یک خاکسترساز کاتالیستی ، از یک قسمت پیشگرم کننده و یک قسمت کاتالیستی تشکیل می‌یابد و حتی با وجود آنکه سیستم‌های کاتالیستی سرد در حال حاضر در دمای محیط کار می‌کنند، نیازمند پیشگرم نیستند و در چنین سیستمی شعله مستقیم وجود ندارد، اگر چه سطح کاتالیست دارای درخشندگی است. معمولا در محفظه پس سوز ، یک دمنده برای مخلوط کردن گازها و توزیع یکنواخت آنها بر روی کاتالیست ، قرار دارد.

مزایا و معایب فرآیند احتراق کاتالیستی

بازده این قبیل خاکسترسازها بستگی به عوامل بسیاری دارد که از آن جمله می‌توان از غلظت آلاینده ، دمای جریان گاز ، غلظت اکسیژن زمان تماس و نوع کاتالیست نام برد. دستیابی به بازده بیشتر از 90% امری غیر ممکن بنظر می‌رسد. فرآیندهای احتراق کاتالیستی به منظور کنترل میزان نشر NO2SO2 هیدروکربنها و منوکسید کربن مورد استفاده قرار گرفته‌اند.

مشکلات اصلی سیستم‌های کاتالیستی عبارتند از: مخارج زیاد تعمیر و نگهداری و همچنین مسموم شدن کاتالیست.

[+] نوشته شده توسط سیده سوسن میرصانع در 1:22 بعد از ظهر | | قالب بلاگفا
پنجشنبه بیست و چهارم بهمن 1387

مقدمه کلی

روابط متقابل شرایط اتمسفری و کیفیت هوا درباره اثراتی که شرایط جوی می‌تواند بر پخش ، غلظت یا حذف آلاینده‌های اتمسفری داشته باشد، ارتباطی دو جانبه است که بصورت تغییرات در مقیاس متوسط و مقیاس کوچک که شامل کاهش قابلیت دید ، بارشهای متغیر ، جزیره گرمایی شهری و تغییرات در مقیاس بزرگ است، صورت می‌گیرد.

تغییرات در مقیاس متوسط کوچک

کاهش قابلیت دید

کاهش قابلیت دید ، یکی از اولین اثرات قابل ملاحظه آلودگی بر پدیده‌های جوی شمرده می‌شود. در عبارتهای هواشناسی ، قابلیت دید عبارتست از معیار استاندارد شفافیت اتمسفر در طیف مرئی. کاهش قابلیت دید بیانگر مخاطرات ایمنی و از لحاظ ظاهر ناخواسته است. ذرات در اندازه‌هایی بین 38/0 تا 76/0 µm و مولکولهای گاز (بویژه دی‌اکسید سولفور) آلاینده‌های اصلی هستند که در کاهش قابلیت دید نقش دارند.

این آلاینده‌ها نور را جذب و منتشر می‌سازند. پراکندگی نور در اثر کاهش تمایز بین اجسام و زمینه آسمان موجب کاهش قابلیت دید می‌شود. پراش نور بوسیله ذرات کوچک موجب ایجاد رنگی مایل به قرمز در مواقع غروب خورشید می‌شود.

بارشهای متغیر

آلاینده‌های هوا که در اتمسفر منتشر شده یا شکل گرفته‌اند، می‌توانند سبب افزایش بارندگی شوند. این پدیده از آن جهت رخ می‌دهد که ذرات کوچک به‌صورت هسته‌ها عمل می‌نمایند و تشکیل قطرات باران را تقویت می‌کنند. این همان اصل مشابهی است که در مورد تشکیل ابر وجود دارد. افزایش زیاد بارش بویژه در هوای بالای مراکز شهرنشینی که انتشار ذرات در آنها به مقدار زیاد صورت می‌گیرد قابل ملاحظه است.

این نکته به ثبات رسیده است که تشکیل مه در شهرهای بزرگ دو برابر تشکیل مه در نواحی توسعه نیافته است و تشکیل ابر در شهرهای بزرگ ده درصد بیشتر از نواحی اطراف شهرهاست. غلظتهای زیاد SO2 افزایش مه در نواحی صنعتی مربوطند. NO و SO2 آزاد شده با بارانهای اسیدی مرتبط هستند.


تصویر


جزیره گرمایی شهری

آلاینده‌های هوا سبب کاهش قابل ملاحظه تابش خورشیدی در شهرها می‌شوند. در برخی از شهرها بعلت آلودگی اتمسفر ، انرژی گرمایی از 15 تا 20 درصد سطح کمتر به سطح زمین می‌رسد. با این وجود راه مقابله با این مشکل عبارت است از افزایش قابلیت حفظ گرما به کمک تجهیزات شهری. این قابلیت در مصالح ساختمانی نظیر قیر ، سنگ و آجر نهفته است.

در مقابله با این اتلاف انرژی ، افزایش گرمایی در اتمسفر بالای شهرها حین وضعیت هوایی سرد و قابل ملاحظه است. این افزایش در دمای اتمسفری بطور مستقیم با افزایش سوخت مصرفی مربوط است. افزایش که به کمک روزهای گرمایی ناحیه‌ای که در آن شهر قرار گرفته است، قابل تخمین است. از آنجایی که افزایش دمای ایجاد شده در اثر سوختن مواد فسیلی ، کاهش دمای بوجود آمده در اثر پوشش ذرات را جبران می‌نماید.

شهرها دماهای متوسط بیشتری دارند و بارش برف قابل اندازه گیری در آنها کمتر از نواحی غیر شهری مجاور آنهاست. پدیده‌ای که از این عوامل ناشی می‌شود، به نام جزیره گرمایی شهری شناخته شده است.

تغییرات در مقیاس بزرگ

افزایش مقدار دی‌اکسید کربن حاصل از سوختن مواد فسیلی موجب تشدید اثر گلخانه‌ای و افزایش دمای زمین می‌گردد. با این وجود بنظر می‌رسد که کاهش اندک دمای زمین از سال 1945 علی‌رغم افزایش مصرف سوختهای فسیلی دال بر کاهش تابش خورشیدی بعلت پراکندگی آثار جذب ناشی از افزایش مقدار ذرات در مقیاس بزرگ بوده است و اثرات ناشی از افزایش دی‌اکسید کربن که سبب حبس گرما می‌شود، نتوانسته است اثر کاهش ناشی از ذرات را خنثی کند.

در واقع کسانی هستند که معتقدند تخلیه ممتد ذرات به درون اتمسفر منجر به پدید آمدن عصر یخبندان
دیگری خواهد شد.

نتیجه

بطور کلی اثرات جهانی آلودگی هوا بر متغیرهای هواشناسی با عبارتهای ساده قابل توصیف نیست در حال حاضر شواهد مستندی دال بر تاثیر فعالیتهای انسانی بر وضعیت هوا در درون و پیرامون نواحی شهری وجود دارند. قراین علت و معلولی میان آلودگی هوا و تغییرات جهانی وضعیت هوا کمتر مستدل بوده‌اند، همچنین پوشش ممتد اتمسفر می‌تواند در مقیاس بزرگ موجب بروز تغییرات جوی گردد.

[+] نوشته شده توسط سیده سوسن میرصانع در 1:6 بعد از ظهر | | قالب بلاگفا
پنجشنبه بیست و چهارم بهمن 1387

مقدمه کلی

ذرات آلی در اتمسفر یافت می‌شوند، عبارتند از: فنلها ، اسیدهای آلی و الکلها. معروفترین ذرات معدنی موجود در اتمسفر عبارتند از نیتراتها ، سولفاتها و فلزاتی مانند آهن ، سرب ، روی و وانادیم.آلاینده‌ها بر حسب ترکیب شیمیایی‌شان ، به دو گروه آلی و معدنی تقسیم می‌شوند. ترکیبات آلی حاوی کربن و هیدروژن هستند.   
تصویر


منابع آلاینده‌ها

هوا دارای آلاینده‌های طبیعی نظیر هاگهای قارچها ، تخم گیاهان ، ذرات معلق نمک و دود و ذرات غبار حاصل از آتش جنگلها و فوران آتشفشانهاست. همچنین هوا حاوی گاز منوکسید کربن تولید شده به شکل طبیعی (CO) حاصل از تجزیه متان (CH4) و هیدروکربنها به شکل ترپنهای ناشی از درختان کاج ، سولفید هیدروژن (H2S) و متان (CH4) حاصل از تجزیه بی‌هوازی مواد آلی می‌باشد.

منابع آلاینده‌ها را بطور کلی می‌توان در چهار گروه اصلی طبقه بندی کرد: شامل وسائط نقلیه موتوری ، وسائط نقلیه هوایی ، ترنها ، کشتی‌ها و هر نوع استفاده و یا تبخیر بنزین ، در بر گیرنده تامین انرژی و حرارت لازم برای مقاصد مسکونی ، تجاری و صنعتی ، نیروگاههای مولد برق که با نیروی بخار کار می‌کنند، مانند صنایع شیمیایی ، متالوژی ، تولید کاغذ و پالایشگاههای تصفیه نفت ، شامل زایدات ناشی از مصارف خانگی و تجاری ، زایدات زغال سنگ و خاکستر باقیمانده از سوزاندن بقایای کشاورزی.

هیدروکربنها

ترکیبات آلی که تنها دارای هیدروژن و کربن هستند، به نام هیدروکربن نام می‌گیرند که بطور کلی به دو گروه آلیفاتیک و آروماتیک تقسیم می‌شوند.

هیدروکربنهای آلیفاتیک

گروه هیدروکربنهای آلیفاتیک شامل آلکانها ، آلکنها و آلکینها هستند. آلکانها عبارتند از: هیدروکربنهای اشباع شده که در واکنشهای فتوشیمیایی اتمسفر نقش ندارند. آلکنها که معمولا به نام اولفین‌ها خوانده می‌شوند، اشباع نشده هستند و در اتمسفر از لحاظ فتوشیمیایی تا حدودی فعال‌اند. این گروه در حضور نور خورشید با اکسید نیتروژن در غلظتهای زیاد واکنش نشان می‌دهند و آلاینده‌های ثانوی مانند پراکسی استیل نیترات (PAN) و ازن (O3) را بوجود می‌آورند. هیدروکربنهای آلیفاتیک تولید شده تا حدود (326mg/m3) برای سلامت انسان و جانوران خطرساز نیست.

هیدروکربنهای آروماتیک

هیدروکربنهای آروماتیک که از لحاظ بیوشیمیایی و بیولوژیکی فعال و برخی از آنها بالقوه سرطانزا هستند، یا از بنزن مشتق شده‌اند و یا به آن مربوط می‌شوند. افزایش میزان ابتلا به سرطان ریه در نواحی شهری به هیدروکربنهای چند هسته‌ای خارج شده از اگزوز اتومبیل‌ها نسبت داده شده است. بنزوپیرین ، سرطانزاترین هیدروکربنهاست. بنزاسفنانتریلین ، بنزوانتراسین و کریزین هم مواد سرطانزای ضعیف‌اند.

منابع هیدروکربنها

میل‌لنگها و کاربراتورها ، بیشترین درصد آزادسازی هیدروکربنها را به خود اختصاص داده‌اند. تجهیزات سوزاننده مکمل که با کاتالیست کار می‌کنند، هیدروکربنها را آزاد کرده و منوکسید کربن را سوزانده و تولید CO2 و آب می‌نمایند.

تکنولوژی کنترل هیدروکربنهای متصاعد شده از منابع ساکن

تکنولوژی کنترل هیدروکربنهای متصاعد شده از منابع ساکن عبارتند از: خاکستر سازی ، جذب ، تراکم و جایگزین نمودن سایر مواد.

فرآیند خاکسترسازی با دستگاههای سوزاننده مکمل و دستگاههای سوزاننده مکمل کاتالیستی صورت می‌گیرد. جذب سطحی توسط کربن فعال صورت می‌گیرد و جذب هیدروکربنها بوسیله یک محلول شوینده در برجهای سینی‌دار ، شوینده‌های جت و برجهای آکنه ، برجهای پاشنده و شوینده‌های ونتوری صورت می‌گیرد.

تصویر


منوکسید کربن

گاز منوکسید کربن ، بیرنگ ، بی‌مزه و بی‌بو است و در شرایط عادی از لحاظ شیمیایی بی‌اثر و طول عمر متوسط آن در اتمسفر حدود 2.5 ماه است. در حال حاضر مقدار منو اکسید کربن در اتمسفر بر روی اموال انسانی ، گیاهان و اشیا بی‌اثر یا کم‌اثر است. در غلظتهای زیاد منو کسید کربن ، به علت تمایل زیاد به جذب هموگلوبین می‌تواند در متابولیسم تنفسی انسان بطور جدی اختلال ایجاد نما‌ید.

غلظت منوکسید کربن در نواحی متراکم شهری که ترافیک سنگین و حرکت خودروها کند است، به میزان قابل توجهی افزایش می‌یابد. منابع کربن ، منوکسید کربن طبیعی و انسانی هستند. طبق گزارش آزمایشگاه ملی آرگون ، در اثر اکسیداسیون گاز متان حاصل از مرگ گیاهان سالانه 13.2 میلیون تن CO وارد طبیعت می‌شود. منبع دیگر تولید این ماده ، متابولیسم انسانی است بازدم شخصی که در حال استراحت است بطور تقریبی حاوی CO ، 1ppm است.

استانداردهای کنترل منوکسید کربن

آنگاه که مقدار منوکسید کربن در مدت زمان کوتاهی به حد مرگبار می‌رسد و شرایط اضطراری می‌شود، برای مقابله با چنین شرایطی که مقدار CO بطور متوسط در مدت زمان 8 ساعت به (46mg/m3 (40ppm می‌رسد،عملیات شدید کنترلی انجام می‌شوند که عبارتند از: متوقف ساختن کارخانه‌های صنعتی و مسدود نمودن جاده‌هایی که در آنها معمولا ترافیک سنیگن وجود دارد. جذب سطحی ، جذب ، میعان و احتراق روشهای فنی کنترل CO هستند.

اکسیدهای گوگرد

این اکسیدها شامل 6 ترکیب مختلف گازی هستند: منوکسید سولفور (SO) ، دی‌‌اکسید سولفور (SO2) ، تری‌اکسید سولفور (SO) تترا اکسید سولفور (SO4) ، سکو اکسید سولفور (SO2) و هپتو اکسید سولفور (S2O7). در مطالعه آلودگی هوا ، دی‌اکسید سولفور و تری‌اکسید سولفور حائز بیشترین اهمیت است. با توجه به پایداری نسبی SO2 در اتمسفر این کار می‌تواند به عنوان یک عامل اکسید کننده و یا احیا کننده وارد عمل شود.

SO2 که با سایر اجزای موجود در اتمسفر به شکل فتوشیمیایی یا کاتالیستی وارد واکنش می‌شود، می‌تواند قطرات اسید سولفوریک (H2SO4) و نمکهای اسید سولفوریک را تولید بکند. SO2 با آب وارد واکنش شده ، تولید سولفورو اسید می‌نماید. این اسید ضعیف با بیش از 80% SO2 آزاد شده در اتمسفر ناشی از فعالیتهای انسانی به سوزاندن سوختهای جامد و فسیلی مربوط می‌شود.

استانداردهای کنترل اکسیدهای ‌سولفور

روشهای گسترده جهت کنترل اکسید سولفور عبارتند از: بکارگیری سوختهای دارای گوگرد کمتر ، جداسازی گوگرد از سوخت ، جایگزین ساختن منابع انرژی‌زای دیگر ، تبدیل زغال سنگ به مایع یا گاز ، پاکسازی محصولات حاصل از احتراق.

اکسیدهای نیتروژن

شامل منوکسید نیتروژن (NO) ، دی‌اکسید نیتروژن (NO2) ، نیترو اکسید (N2O) نیتروژن سیسکواکسید (N2O3) ، نیتروژن تترااکسید (N2O4) و نیتروژن پنتواکسید (N2O5) هستند.

دو گاز مهمی در معادلات آلودگی هوا مهم‌اند عبارتند از: اکسید نیتریک (NO) و دی‌اکسید نیتروژن ، دی‌اکسید نیتروژن که از هوا سنگینتر و در آب محلول است، در آب تشکیل اسید نیتریک و یا اسید نیترو و یا اکسید نیتریک (NO) می‌دهد. اسید نیتریک و اسید نیترو در اثر بارندگی به سطح زمین سقوط کرده ، یا با آمونیاک موجود در اتمسفر (NH3) ترکیب شده آمونیم نیترات (NH4NO3) بوجود می‌آورد.

در این مواقع 2NO از اجزای غذایی گیاهان را تشکیل می‌دهد. NO2 یکی از اجزای غذایی گیاهان را تشکیل می‌دهد. NO2 که در دامنه تشعشع فوق‌بنفش جاذب خوب انرژی به شمار می‌رود، در تولید آلاینده‌های ثانوی هوا از قبیل ازن O3 نقش مهمی دارد مقدار NO آزاد شده در اتمسفر به مراتب بیش از مقدار NO2 آزاد شده است. NO در فرآیندهای احتراقی با دمای زیاد و در اثر ترکیب نیتروژن و اکسیژن بوجود می‌آید.

منابع اکسیدهای نیتروژن

برخی از اکسیدهای نیتروژن به صورت طبیعی و برخی به صورت انسانی ایجاد می‌شوند. در اثر آتش‌سوزی جنگل مقدار اندکی NO2 ایجاد می‌شود. تجزیه باکتریایی مواد آلی نیز سبب آزاد شدن NO2 در اتمسفر می‌شود. در واقع منابع تولید کننده NO2 بطور طبیعی تقریبا 10 برابر منابع انسانی که در نواحی شهری دارای تراکم و غلظت هستند می‌باشد. بخش عمده NO2 تولید شده از منابع انسانی مربوط به احتراق سوخت در منابع ساکن و حرکت وسائط نقلیه می‌باشد.

استانداردهای کنترل اکسیدهای نیتروژن

بطور کلی اغلب اندازه گیریهای کنترلی برای NO2 آزاد شده در راستای محدود ساختن شرایط احتراق و کاهش تولید NO2 و همچنین استفاده از تجهیزات متنوع برای حذف NO2 از جریان گازهای خروجی انجام می‌شوند.

اکسید کننده‌های فتوشیمیایی

اکسید ‌کننده‌ها یا اکسید کننده‌های کامل دو عبارتی هستند که برای توصیف مقادیر اکسید ‌‌کننده‌های فتوشیمیایی بکار می‌روند و معمولا نشان‌دهنده قدرت اکسید کنندگی هوای اتمسفر می‌باشند. ازن (O3) که اکسید‌ کننده فتوشیمیایی اصلی است، در حدود 90 درصد از اکسید کننده‌ها را بخود اختصاص می‌دهد. سایر اکسید کننده‌های فتوشیمیایی مهم در کنترل آلودگی هوا عبارتند از: اکسیژن نوزاد (O) ، اکسیژن مولکولی برانگیخته (O2) ، پروکسی آسیل نیترات (PAN) ، پروکسی پروپانول نیترات (PPN) ، پروکسی بوتیل نیترات (PBN) ، دی اکسید نیتروژن (NO2) ، پراکسید هیدروژن (H2O2) و الکیل نیتراتها.

تصویر


اثرات اکسید‌کننده‌ها

اثرات اکسید‌کننده‌ها بر سلامتی انسان می‌تواند موجب سرفه ، کوتاهی نفس ، گرفتگی راه عبور هوا ، گرفنگی و درد قفسه سینه ، عملکرد نامناسب ششها ، تغییر سلولهای قرمز خون ، آماس خشک و سوزش چشم ، بینی و گلو شوند. اکسید ‌کننده‌های اصلی که به گیاهان آسیب می‌رسانند، عبارتند از PAN , O3 که از خلال روزنه‌های موجود در برگ وارد گیاه شده و در متابولیسم سلول گیاهی دخالت می‌کنند. علائم بوجود آمده از تماس گیاه با PAN عبارتند از: برونزه شدن ، براق شدن و نقره‌ای شده سطح زیرین برگها.

تماس متناوب اکسید ‌کننده‌ها با گیاهان موجب کاهش محصولات می‌شود. اکسید‌ کننده‌ها به سرعت با رنگها ، الاستومرها (اکسید ‌کننده‌ها) الیاف پارچه‌ای و رنگهای نساجی واکنش نشان داده ، آنها را اکسید می‌کند.

استانداردهای کنترل اکسید ‌کننده‌ها

این نکته روشن شده است که حتی اگر هیچ هیدروکربنی در اتمسفر وجود نداشته باشد، تا زمانی که CO و NO2 حضور دارند، مقادیر قابل ملاحظه‌ای از ازن می‌تواند تولید شود. در حال حاضر علیرغم کوششهای منظم بر روی کنترل CO ، هیدروکربنها و NO2 مقادیری از این آلاینده‌ها که برای ایجاد ازن فتوشیمیایی کافی هستند، همچنان در اتمسفر وجود دارد.

[+] نوشته شده توسط سیده سوسن میرصانع در 12:53 بعد از ظهر | | قالب بلاگفا
دوشنبه بیست و یکم بهمن 1387

نایلونها از گروه پلیمرهای پلی آمید هستند. این پلیمرها از طریق واکنش‌های چند تراکمی یا پلی کندانسیون تولید می‌شوند. می‌دانیم که نایلونها کاربردهای صنعتی فراوانی دارند. از جمله کاربردهای این پلیمرها در تهیه الیاف پارچه است.


تصویر
ساختمان فضایی نایلون

پلی کندانسیون یا پلیمریزاسیون تراکمی

اگر در یک پلیمریزاسیون بر اثر واکنش منومرها باهم ، مولکولهای کوچکی مثل NH3 ، H2O و ... خارج شوند، پلیمریزاسیون را پلی کندانسیون یا تراکمی می‌نامند. مثل پلیمریزسایون گلوکز در تولید نشاسته و سلولز که منجر به خارج شدن آب می‌گردد و یا مثل بوجود آمدن نایلون که مانند مواد پروتئینی یک پلی آمید است و از پلیمر شدن یک آمید دو ظرفیتی به نام هگزامتیلن دی آمین به فرمول: NH2 - (CH2)6 - NH2 با یک اسید دو ظرفیتی به نام اسید آدیپیک به فرمول HOOC - (CH2)4 - COOH بوجود می‌آید.

در این عمل عامل OH – اسید از دو طرف با هیدروژن گروه آمین NH2 تشکیل آب می‌دهند و خارج می‌شوند و باقیمانده مولکولهای آنها ، زنجیر پلیمر را بوجود می‌آوردند. به عبارت دیگر واکنش چند تراکمی از متراکم شدن دو عامل مختلف از دو منومر مختلف و یا از متراکم شدن دو عامل مختلف از یک مولکول با همان مولکول پلیمر سنتز می‌شود.

پلی آمیدها

پلی آمیدها شامل سه نوع نایلون ، نایلون 6 ، نایلون 6و 6 و نایلون 11 می‌باشد. همانطور که ذکر شد، پلی آمیدها از طریق واکنشهای چند تراکمی یا پلی کندانسیون بوجود می‌آیند.

نایلون 6

نایلون 6 ، از باز شدن حلقه کاپرولاکتام در حضور آغازگر N - بنزوئیل δ - پیرولیدون و کاتالیزور سدیم آمید NH2NaNH2Na2 ، چون بعنوان آغازگر بکار می‌رود، تنها به مقدار بسیار اندک داریم که آغازگر حلقه بوده و بعد از آن ، واکنش پیش خواهد رفت. بدست می‌آید. ماده اولیه کاپرولاکتام ، بنزن است. از کاپرولاکتام در محیط عمل به مقدار بسیار زیاد داریم.ولی

نایلون 6 و 6

همانطور که گفته شد، نایلون 6 و 6 از متراکم شدن اسید آدیپیک و هگزا متیلن دی آمین در حضور حرارت و حذف یک مولکول آب ایجاد می‌گردد.

یک مولکول آب + نایلون 6 و 6 <---------- HOOC-(Ch2)4-COOH + NH2-(CH2)6-NH2 + حرارت

نایلون 11

نایلون 11 فرآورده بسیار مهمی است که از متراکم شدن آمینو اندوکانوئیک اسید که از روغن گرچک گرفته می‌شود، بوجود می‌آید و پلی آمید Rilsan یا Nylon11 نامیده می‌شود. از متراکم شدن این ماده نیز در حضور حرارت ، آب آزاد می‌شود. Rilsan بهترین الیاف پارچه محسوب می‌شود. چون رنگ پذیری و استحکام بالایی دارد.


تصویر
کیف از جنس نایلون

خواص و کاربردهای نایلون

بیشترین کاربرد نایلونها در تهیه الیاف پارچه و صنایع نساجی است و در تهیه قطعات صنعتی نیز کاربرد دارند. نایلون‌ها قدرت مکانیکی خوبی دارند و به این علت در این صنایع استفاده می‌شوند. این پلیمرها ، نقطه ذوب بالایی دارند. چون در بین زنجیرهای پلیمر ، پیوند هیدروژنی ایجاد شده است. این پلیمرها کمتر در حلال‌ها حل می‌شوند، اما قابل انحلال در اسید فرمیک و پلی آمیدها هستند.

[+] نوشته شده توسط سیده سوسن میرصانع در 5:6 بعد از ظهر | | قالب بلاگفا
دوشنبه بیست و یکم بهمن 1387

دید کلی

در اینجا ، منظور از تقطیر ، در واقع جداسازی فیزیکی برشهای نفتی در پالایشگاه است که اساس آن اختلاف در نقطه جوش هیدروکربنهای مختلف است. هر چه هیدروکربن ، سنگینتر باشد، نقطه جوش آن زیاد است و هر چه هیدروکربن سبکتر باشد، زودتر خارج می‌شود. در این مقاله انواع روشهای تقطیر را در برج تقطیر بررسی می‌کنیم.

img/daneshnameh_up/5/55/refinery.jpg

تقطیر تبخیر ناگهانی

در این نوع تقطیر ، مخلوطی از مواد نفتی که قبلا در مبدلهای حرارتی و یا کوره گرم شده‌اند، بطور مداوم به ظرف تقطیر وارد می‌شوند و تحت شرایط ثابت ، مقداری از آنها به صورت ناگهانی تبخیر می‌شوند. بخارات حاصله بعد از میعان و مایع باقیمانده در پایین برج بعد از سرد شدن به صورت محصولات تقطیر جمع آوری می‌شوند. در این نوع تقطیر ، خلوص محصولات چندان زیاد نیست.

تقطیر با مایع برگشتی (تقطیر همراه با تصفیه)

در این روش تقطیر ، قسمتی از بخارات حاصله در بالای برج ، بعد از میعان به صورت محصول خارج شده و قسمت زیادی به داخل برج برگردانده می‌شود. این مایع به مایع برگشتی موسوم است. مایع برگشتی با بخارات در حال صعود در تماس قرار داده می‌شود تا انتقال ماده و انتقال حرارت ، صورت گیرد. از آنجا که مایعات در داخل برج در نقطه جوش خود هستند، لذا در هر تماس مقداری از بخار ، تبدیل به مایع و قسمتی از مایع نیز تبدیل به بخار می‌شود.

نتیجه نهایی مجوعه این تماسها ، بخاری اشباع از هیدروکربنهای با نقطه جوش کم و مایعی اشباع از مواد نفتی با نقطه جوش زیاد می‌باشد.در تقطیر با مایع برگشتی با استفاده از تماس بخار و مایع ، می‌توان محصولات مورد نیاز را با هر درجه خلوص تولید کرد، مشروط بر اینکه به مقدار کافی مایع برگشتی و سینی در برج موجود باشد. بوسیله مایع برگشتی یا تعداد سینیهای داخل برج می‌توانیم درجه خلوص را تغییر دهیم. لازم به توضیح است که ازدیاد مقدار مایع برگشتی باعث افزایش میزان سوخت خواهد شد. چون تمام مایع برگشتی باید دوباره به صورت بخار تبدیل شود.

امروزه به علت گرانی سوخت ، سعی می‌شود برای بدست آوردن خلوص بیشتر محصولات ، به جای ازدیاد مایع برگشتی از سینیهای بیشتری در برجهای تقطیر استفاده شود. زیاد شدن مایع برگشتی موجب زیاد شدن انرژی می‌شود. برای همین ، تعداد سینیها را افزایش می‌دهند. در ابتدا مایع برگشتی را 100درصد انتخاب کرده و بعد مرتبا این درصد را کم می‌کنند و به صورت محصول خارج می‌کنند تا به این ترتیب دستگاه تنظیم شود.

img/daneshnameh_up/d/d8/rtyuopl.jpg

انواع مایع برگشتی

  • مایع برگشتی سرد: این نوع مایع برگشتی با درجه حرارتی کمتر از دمای بالای برج تقطیر برگردانده می‌شود. مقدار گرمای گرفته شده ، برابر با مجموع گرمای نهان و گرمای مخصوص مورد نیاز برای رساندن دمای مایع به دمای بالای برج است.
  • مایع برگشتی گرم: مایع برگشتی گرم با درجه حرارتی برابر با دمای بخارات خروجی برج مورد استفاده قرار می‌گیرد.
  • مایع برگشتی داخلی: مجموع تمام مایعهای برگشتی داخل برج را که از سینی‌های بالا تا پایین در حرکت است، مایع برگشتی داخلی گویند. مایع برگشتی داخلی و گرم فقط قادر به جذب گرمای نهان می‌باشد. چون اصولا طبق تعریف اختلاف دمایی بین بخارات و مایعات در حال تماس وجود ندارد.
  • مایع برگشت دورانی: این نوع مایع برگشتی ، تبخیر نمی‌شود. بلکه فقط گرمای مخصوص معادل با اختلاف دمای حاصل از دوران خود را از برج خارج می‌کند. این مایع برگشتی با دمای زیاد از برج خارج شده و بعد از سرد شدن با درجه حرارتی کمتر به برج برمی‌گردد. معمولا این نوع مایع برگشتی در قسمتهای میانی یا درونی برج بکار گرفته می‌شود و مایع برگشتی جانبی هم خوانده می‌شود. اثر عمده این روش ، تقلیل حجم بخارات موجود در برج است.

نسبت مایع برگشتی

نسبت حجم مایع برگشتی به داخلی و محصول بالایی برج را نسبت مایع برگشتی گویند. از آنجا که محاسبه مایع برگشتی داخلی نیاز به محاسبات دقیق دارد، لذا در پالایشگاهها ، عملا نسبت مایع برگشتی بالای برج به محصول بالایی را به عنوان نسبت مایع برگشتی بکار می‌برند.

تقطیر نوبتی

این نوع تقطیرها در قدیم بسیار متداول بوده، ولی امروزه بعلت نیاز نیروی انسانی و ضرورت ظرفیت زیاد ، این روش کمتر مورد توجه قرار می‌گیرد. امروزه تقطیر نوبتی ، صرفا در صنایع دارویی و رنگ و مواد آرایشی و موارد مشابه بکار برده می‌شود و در صنایع پالایش نفت در موارد محدودی مورد استفاده قرار می‌گیرد. بنابراین در موارد زیر ، تقطیر نوبتی از نظر اقتصادی قابل توجه می‌باشد.

  • تقطیر در مقیاس کم
  • ضرورت تغییرات زیاد در شرایط خوراک و محصولات مورد نیاز
  • استفاده نامنظم از دستگاه
  • تفکیک چند محصولی
  • عملیات تولید متوالی با فرآیندهای مختلف


img/daneshnameh_up/7/7f/pala.jpg

تقطیر مداوم

امروزه بعلت اقتصادی بودن مداوم در تمام عملیات پالایش نفت از این روش استفاده می‌شود. در تقطیر مداوم برای یک نوع خوراک مشخص و برشهای تعیین شده شرایط عملیاتی ثابت بکار گرفته می‌شود. بعلت ثابت بودن شرایط عملیاتی در مقایسه با تقطیر نوبتی به مراقبت و نیروی انسانی کمتری احتیاج است. با استفاده از تقطیر مداوم در پالایشگاهها مواد زیر تولید می‌شود:

گاز اتان و متان بعنوان سوخت پالایشگاه ، گاز پروپان و بوتان بعنوان گاز مایع و خوراک واحدهای پتروشیمی ، بنزین موتور و نفتهای سنگین بعنوان خوراک واحدهای تبدیل کاتالیستی برای تهیه بنزین با درجه آروماتیسیته بالاتر ، حلالها ، نفت سفید ، سوخت جت سبک و سنگین ، نفت گاز ، خوراک واحدهای هیدروکراکینگ و واحدهای روغن سازی ، نفت کوره و انواع آسفالتها.

[+] نوشته شده توسط سیده سوسن میرصانع در 4:58 بعد از ظهر | | قالب بلاگفا
دوشنبه بیست و یکم بهمن 1387

فرآیندی که در آن ، جامد بدون عبور از حالت مایع ، مستقیما به بخار تبدیل می‌گردد، تصعید نامیده می‌شود. این فرآیند برگشت پذیر است.


تصویر
فرایند تصعید

آنتالپی مولی تصعید

آنتالپی مولی تصعید ، مقدار گرمایی است که بایستی به یک مول از ماده جامد داده شود تا مستقیما به گاز تبدیل گردد.

فشار بخار یک جامد و فرایند تصعید

مولکولها در یک بلور ، حول محور خود در شبکه نوسان می‌کنند. توزیع انرژی جنبشی بین این مولکولها نظیر توزیع انرژی جنبشی بین مولکولهای مایع و گاز است. در یک بلور ، انرژی از مولکولی به مولکول دیگر منتقل می‌شود و از این‌رو انرژی هیچ مولکولی ثابت نیست. مولکولهای پرانرژی در سطح بلور می‌توانند بر نیروهای جاذبه بلور غلبه کرده، به فاز بخار بگریزند.

اگر بلور در یک ظرف سربسته باشد، سرانجام حالت تعادلی برقرار می‌شود که در آن حالت ، سرعت جدا شدن مولکولها از جامد با سرعت بازگشت مولکولهای بخار به بلور برابری می‌کند. فشار بخار یک جامد در دمای معین ، معیاری از تعداد مولکولها در حجم معینی از بخار در حالت تعادل است.

ارتباط فشار بخار با نیروهای جاذبه

گرچه فشار بخار برخی از جامدات ، بسیار کم است، ولی هر جامدی دارای فشار بخار است. مقدار فشار بخار با قدرت نیروهای جاذبه نسبت عکس دارد. به همین علت ، فشار بخار بلورهای یونی بسیار کم است.

ارتباط فشار بخار جامد با دما

توانایی مولکولها برای غلبه بر نیروهای جاذبه بین مولکولها با انرژی جنبشی آنها بستگی دارد. از اینرو ، فشار بخار جامدات با افزایش دما زیاد می‌شود. منحنی تغییرات فشار بخار برحسب دما نشان می‌دهد که این منحنی در نقطه انجماد ، منحنی فشار بخار آب را قطع می‌کند.

فشار بخار جامد در نقطه انجماد

در نقطه انجماد ، فشار بخار جامد برابر با فشار بخار مایع است. نقطه انجماد نرمال آب (در فشار کل یک اتمسفر) در غیاب هوا 25x10-4 درجه سانتیگراد است. ولی در هوا و در فشار کل یک اتمسفر نقطه انجماد آب 0.0000درجه سانتیگراد می‌باشد و این مقداری است که معمولا گزارش می‌شود. این اختلاف در نقطه انجماد ، از هوای محلول در آب ناشی می‌شود.

نقطه انجماد مواد ، معمولا در هوا اندازه‌گیری می‌شود. ولی در هر حال ، تغییر انجماد مواد ناشی از وجود هوا عموما بسیار ناچیز است.

تصعید دی‌اکسید کربن

نمودار فاز دی‌اکسید کربن ، گونه‌ای از نمودار فاز موادی است که در فشار معمولی به جای ذوب شدن و جوشیدن تصعید می‌شوند. در فشار 5.11 اتمسفر نقطه سه گانه سیستم دی‌اکسید کربن ، 55.6 - درجه سانتیگراد است. دی‌اکسید کربن مایع ، تنها در فشارهای بالاتر از 5.11 اتمسفر وجود دارد. اگر دی‌اکسیدکربن جامد (یخ خشک) را تحت فشار یک اتمسفر گرم کنیم، در دمای 78.5 - درجه سانتی‌گراد مستقیما به گاز تبدیل می‌شود.

[+] نوشته شده توسط سیده سوسن میرصانع در 4:49 بعد از ظهر | | قالب بلاگفا
دوشنبه بیست و یکم بهمن 1387

دید کلی

تقطیر ، در واقع ، جداسازی فیزیکی برشهای نفتی است که اساس آن ، اختلاف در نقطه جوش هیدروکربنهای مختلف است. هر چه هیدروکربن سنگینتر باشد، نقطه جوش آن زیاد است و هر چه هیدروکربن سبکتر باشد، زودتر خارج می‌شود. اولین پالایشگاه تاسیس شده در جهان ، در سال 1860 در ایالت پنسیلوانیای آمریکا بوده است. نفت خام ، از کوره‌های مبدل حرارتی عبور کرده، بعد از گرم شدن وارد برجهای تقطیر شده و تحت فشار و دما به دو صورت از برجها خارج می‌شود و محصولات بدست آمده خالص نیستند. انواع برجهای تقطیر در زیر توضیح داده می‌شوند.

img/daneshnameh_up/1/1d/eeee.jpg


برجهای تقطیر با سینی کلاهکدار

در برجهای تقطیر با سینی کلاهکدار ، تعداد سینیها در مسیر برج به نوع انتقال ماده و شدت تفکیک بستگی دارد. قطر برج و فاصله میان سینی‌ها به مقدار مایع و گاز که در واحد زمان از یک سینی می‌گذرد، وابسته است. هر یک از سینی‌های برج ، یک مرحله تفکیک است. زیرا روی این سینیها ، فاز گاز و مایع در کنار هم قرار می‌گیرند و کار انتقال ماده از فاز گازی به فاز مایع یا برعکس در هر یک از سینی‌ها انجام می‌شود. برای اینکه بازدهی انتقال ماده در هر سینی به بیشترین حد برسد، باید زمان تماس میان دو فاز و سطح مشترک آنها به بیشترین حد ممکن برسد.

بخشهای مختلف برج تقطیر با سینی کلاهکدار

  • بدنه و سینیها: جنس بدنه معمولا از فولاد ریخته است. جنس سینی‌ها معمولا از چدن است. فاصله سینی‌ها را معمولا با توجه به شرایط طراحی ، درجه خلوص و بازدهی کار جداسازی بر می‌گزینند. در بیشتر پالایشگاههای نفت ، برای برجهای تقطیر به قطر 4ft فاصله میان 50 - 18 سانتیمتر قرار می‌دهند. با بیشتر شدن قطر برج ، فاصله بیشتری نیز برای سینی‌ها در نظر گرفته می‌شود.
  • سرپوشها یا کلاهکها: جنس کلاهکها از چدن می‌باشد. نوع کلاهکها با توجه به نوع تقطیر انتخاب می‌شود و تعدادشان در هر سینی به بیشترین حد سرعت مجاز عبور گاز از سینی بستگی دارد.
  • موانع یا سدها: برای کنترل بلندی سطح مایع روی سینی ، به هر سینی سدی به نام "وییر" (Wier) قرار می‌دهند تا از پایین رفتن سطح مایع از حد معنی جلوگیری کند. بلندی سطح مایع در روی سینی باید چنان باشد که گازهای بیرون آمده از شکافهای سرپوشها بتوانند از درون آن گذشته و زمان گذشتن هر حباب به بیشترین حد ممکن برسد. بر اثر افزایش زمان گذشتن حباب از مایع ، زمان تماس گاز و مایع زیاد شده ، بازدهی سینی‌ها بالا می‌رود.

برجهای تقطیر با سینی‌های مشبک

در برجهای با سینی مشبک ، اندازه مجراها یا شبکه‌ها باید چنان برگزیده شوند که فشار گاز بتواند گاز را از فاز مایع با سرعتی مناسب عبور دهد. عامل مهمی که در بازدهی این سینیها موثر است، شیوه کارگذاری آنها در برج است. اگر این سینیها کاملا افقی قرار نداشته باشند، بلندی مایع در سطح سینی یکنواخت نبوده و گذر گاز از همه مجراها یکسان نخواهد بود.

خورندگی فلز سینیها هم در این نوع سینیها اهمیت بسیار دارد. زیرا بر اثر خورندگی ، قطر سوراخها زیاد می‌شود که در نتیجه مقدار زیادی بخار با سرعت کم از درون آن مجاری خورده شده گذر خواهد کرد. و می‌دانیم که اگر سرعت گذشتن گاز از حد معینی کمتر گردد، مایع از مجرا به سوی پایین حرکت کرده بازدهی کار تفکیک کاهش خواهد یافت.

برجهای تقطیر با سینی‌های دریچه‌ای

این نوع سینیها مانند سینیهای مشبک هستند. با این اختلاف که دریچه‌ای متحرک روی هر مجرا قرار گرفته است. در صنعت نفت ، دو نوع از این سینیها بکار می‌روند:

  1. انعطاف پذیر: همانطور که از نام آن برمی‌آید، دریچه‌ها می‌توانند بین دو حالت خیلی باز یا خیلی بسته حرکت کنند.
  2. صفحات اضافی: در این نوع سینیها ، دو دریچه یکی سبک که در کف سینی قرار می‌گیرد و دیگری سنگین که بر روی سه پایه‌ای قرار گرفته ، تعبیه شده است. هنگامی که بخار کم باشد، تنها سرپوش سبک به حرکت در می‌آید. اگر مقدار بخار از حد معینی بیشتر باشد، هر دو دریچه حرکت می‌کنند.

مقایسه انواع گوناگون سینی‌ها

در صنعت نفت ، انواع گوناگون سینی‌ها در برجهای تقطیر ، تفکیک و جذب بکار برده می‌شوند. ویژگیهایی که در گزینش نوع سینی برای کار معینی مورد توجه قرار می‌گیرد، عبارت است از: بازدهی تماس بخار و مایع ، ظرفیت سینی ، افت بخار در هنگام گذشتن از سینی ، زمان ماندن مایع بر روی سینی ، مشخصات مایع و ... . چون در صنعت بیشتر سینی‌های کلاهکدار بکار برده می‌شوند، برای مقایسه مشخصات سینی‌های دیگر ، آنها را نسبت به سینی‌های کلاهکدار ارزیابی می‌کنند.

برجهای انباشته

در برجهای انباشته ، بجای سینی‌ها از تکه‌ها یا حلقه‌های انباشتی استفاده می‌شود. در برجهای انباشته حلقه‌ها یا تکه‌های انباشتی باید به گونه‌ای برگزیده و در برج ریخته شوند که هدفهای زیر عملی گردد.

  1. ایجاد بیشترین سطح تماس میان مایع و بخار
  2. ایجاد فضا مناسب برای گذشتن سیال از بستر انباشته

جنس مواد انباشتی

این مواد باید چنان باشند که با سیال درون برج ، میل ترکیبی نداشته باشند.

استحکام مواد انباشتی

جنس مواد انباشتی باید به اندازه کافی محکم باشد تا بر اثر استفاده شکسته نشده و تغییر شکل ندهد.

شیوه قرار دادن مواد انباشتی

مواد انباشتی به دو صورت منظم و نامنظم درون برج قرار می‌گیرند.

  1. پر کردن منظم: از مزایای این نوع پر کردن، کمتر بودن افت فشار است که در نتیجه می‌شود حجم بیشتر مایع را از آن گذراند.
  2. پر کردن نامنظم: از مزایای این نوع پر کردن ، می‌توان به کم هزینه بودن آن اشاره کرد. ولی افت فشار بخار در گذر از برج زیاد خواهد بود.


img/daneshnameh_up/d/d8/rtyuopl.jpg


مقایسه برجهای انباشته با برجهای سینی‌دار

در برجهای انباشته ، معمولا افت فشار نسبت به برجهای سینی‌دار کمتر است. ولی اگر در مایع ورودی برج ، ذرات معلق باشد، برجهای سینی‌دار بهتر عمل می‌کنند. زیرا در برجهای انباشته ، مواد معلق ته‌نشین شده و سبب گرفتگی و برهم خوردن جریان مایع می‌گردد. اگر برج بیش از حد متوسط باشد، برج سینی‌دار بهتر است. زیرا اگر در برجهای انباشته قطر برج زیاد باشد، تقسیم مایع در هنگام حرکت از بستر انباشته شده یکنواخت نخواهد بود.

در برجهای سینی‌دار می‌توان مقداری از محلول را به شکل فرایندهای کناری از برج بیرون کشید، ولی در برجهای انباشته این کار، شدنی نیست. کارهای تعمیراتی در درون برجهای سینی‌دار ، آسانتر انجام می‌گیرد. تمیز کردن برجهای انباشته ، از آنجا که باید پیش از هرچیز آنها را خالی کرده و بعد آنها را تمیز نمایم، بسیار پرهزینه خواهد بود.

[+] نوشته شده توسط سیده سوسن میرصانع در 4:47 بعد از ظهر | | قالب بلاگفا
دوشنبه بیست و یکم بهمن 1387

تاریخچه

برای اولین بار در سال 1800، آب بوسیله "کارلسیل" و نیکولسن ، الکترولیز شد که منجر به آزاد شدن هیدروژن در کاتد و اکسیژن در آند شد.

الکترولیز آب خالص

در الکترولیز آب خالص ، از آنجا که آب خالص رسانا نیست، می‌بایستی الکترولیتی به آن اضافه کرد که نه آنیون آن قادر به ترکیب شدن با الکترودها باشد و نه کاتیون آن. برای این منظور ، می‌توان خواه از یک اسید مثلا اسید سولفوریک (H2SO4) ، خواه یک باز ، مانند هیدروکسید سدیم (NaOH) ، و حتی یک نمک (Na2SO4) استفاده کرد. برعکس ، به‌علت آزاد شدن کلر آندی ، شایسته است که از مصرف کلریدها خودداری شود.

اختلاف پتانسیل لازم برای الکترولیز آب

اصولا ، اختلاف پتانسیل لازم برای تجزیه آب ، چیزی جز اختلاف پتانسیل الکتریکی یک الکترود اکسیژنی و یک الکترود هیدروژنی نیست که در PH برابر 1.23 ولت است. در عمل ، بایستی اضافه پتانسیل الکتریکی آندی و کاتدی را که موجب افزایش اختلاف پتانسیل تحمیلی و بنابراین مصرف انرژی می‌شود، به حساب آورد.

الکترودهای لازم برای الکترولیز آب و اختلاف پتانسیل نتیجه شده

این اضافه پتانسیلهای الکتریکی ، بستگی اندکی به نوع الکترولیت انتخاب شده دارند، اما به‌شدت به ماهیت الکترودها وابسته‌اند. بهترین نتایج را می‌توان با کاتد پلاتینی و آند نیکلی بدست آورد. اما بدلیل قیمت بسیار بالای چنین وسایلی و نظر به برتری اندکی که نتیجه می‌شود، در صنعت ترجیح داده می‌شود تا با الکترودهای آهنی در محلول سود یا پتاس سوزان کار کنند.

بنابراین ، اختلاف پتانسیل حداقل الکترولیز در حدود 1.7 ولت است. بایستی افت اهمی پتانسیل الکتریکی در حمام را به آن اضافه کرد. با وجود دیافراگم ، مقدار افت بیشتر می‌شود. در مجموع ، اختلاف پتانسیل حقیقی ، اندکی بیشتر از 2 ولت است.


تصویر


چگونگی بدست آوردن گازهای خالص

برای بدست آوردن گازهای خالص ، بایستی قسمتهای آندی و کاتدی را از یکدیگر جدا کرد. برای این منظور ، خواه از یک ظرف استوانه‌ای شیشه‌ای که کاتد را احاطه می‌کند و خواه از یک دیافراگم آزبستی استفاده می‌شود. لیکن ، گاز خالص بدست آمده نسبی است و هر یک از گازهای اکسیژن و هیدروژن می‌توانند تا 2 الی 3 درصد از دیگری را در خود داشته باشند، ولی عمل پالایش شیمیایی بعدی آسان است.

انرژی لازم برای الکترولیز آب

مصرف انرژی در حدود 6 کیلووات ساعت (KWh) ، برای بدست آوردن یک متر مکعب هیدروژن و نیم متر مکعب اکسیژن ، مقدار زیادی است و علاوه بر آن ، اکسیژن غالبا محل فروش هم ندارد. بدین ترتیب ، این روش اغلب در مناطقی که دارای انرژی الکتریکی فراوان هستند (نروژ) و بویژه به‌منظور تهیه هیدروژن متراکم که در سیلندر به فروش می‌رسد، استفاده می‌شوند. اما این هیدروژن بخش اندکی از کل گاز هیدروژن تولید شده است. اما با این وجود ، دستگاههای الکترولیز در فرانسه یا به منظور ایجاد موازنه تولید یا برای استفاده از کارخانجات مخصوص که هیدروژن خالص را به‌عنوان کاهنده بکار می‌برند، بکار برده می‌شوند. در این قبیل موارد ، اغلب اکسیژن در فضا رها می‌شود.

[+] نوشته شده توسط سیده سوسن میرصانع در 4:41 بعد از ظهر | | قالب بلاگفا
دوشنبه بیست و یکم بهمن 1387

گریس یا روغن (greese) ، برشی از نفت خام با نقطه جوش بالاتر از 400 درجه سانتی‌گراد می‌باشد.

دید کلی

وجه تمایز روغنهای نفتی یا گریس از سایر مواد نفتی در درجه اول ، ویسکوزیته زیاد آنهاست و در درجه دوم ، بررسی ساختمان مولکولی روغنهای نفتی برای توجیه غلظت می‌باشد. گریس که یکی از برشهای فوق‌العاده مهم نفت خام است، در حقیقت برشی از نفت است که به هدر می‌رود. در مقابل نفت سفید است که به عنوان سوخت بکار می‌رود.

روشهای تهیه گریس در پالایشگاه

روغنهای نفتی (گریس) یکی به روش تقطیر در پالایشگاه تهیه می‌شوند، به این صورت که بعضی روغنها از چکیده‌های حاصل از تقطیر تحت خلاء یا تقطیر بوسیله بخار آب تهیه می‌شوند. گروهی از این مواد نیز از اختلاط چکیده‌ها و باقی مانده‌ها بدست می‌آیند. چکیده‌های مناسب برای تهیه گریس عبارتند از:

هیدروکربنهایی که در مولکول آنها از 25 تا 35 و یا احتمالا 40 اتم کربن وجود دارد. در مولکول باقیمانده‌هایی که به عنوان روغن گریس بکار می‌رود، از 50 تا 60 و حتی گاهی تا 80 و بیشتر اتم کربن وجود دارد. ساختمان مولکولی روغنهای پالایش شده معمولا با روغنهای خام به مقدار قابل ملاحظه‌ای تفاوت دارد. زیرا در جریان پالایش ، واکسها (مومها) که قسمت اعظم آن را پارافینهای نرمال تشکیل می‌دهد، حذف می‌شوند. ثانیا پالایش از راه استخراج بوسیله حلال و عمل جذب سطحی ، بیشترِ مواد غیر هیدروکربنی و معطره‌های چند حلقه‌ای (هیدروکربنهای آروماتیک) و احتمالا بعضی از سیکلو پارافینهای چند حلقه‌ای را حذف می‌نماید.


تصویر


تقسیم بندی گریس از نظر کاربرد

  1. گریس ویژه بخشهای اتصالی محور حرکت (در 5 نوع ساخته شده است)
  2. گریس ویژه محفظه میل لنگ (در 7 نوع ساخته شده است)
  3. گریسی که به عنوان سیال در تبدیل کننده‌های چند بهره‌ای یا جفتهای هیدرولیکی بکار می‌رود.

تجزیه گریس

نتایج حاصله از تجزیه گریس نشان می‌دهد که روغن یا گریس نسبت به اجزای سبکتر نفت ، حاوی مقدار بیشتری از سیکلو پارافینها و معطره‌ها و اجزای غیر هیدروکربنی بوده و شامل مقدار کمتری هیدروکربنهای پارافینی نرمال شاخه‌دار می‌باشد.

[+] نوشته شده توسط سیده سوسن میرصانع در 4:35 بعد از ظهر | | قالب بلاگفا
دوشنبه بیست و یکم بهمن 1387

مقدمه

فاضلاب و پس آبهای مراکز صنعتی ، کشاورزی و همینطور محلهای مسکونی از آلوده کننده‌های عمده آبهای زیرزمینی و آبهای سطحی بویژه آبهای رودخانه‌ها ، دریاها و دریاچه‌ها هستند. با این فاضلابها و همینطور عوامل مؤثر در آلودگی فاضلاب و پس آبها آشنا می‌شویم.
img/daneshnameh_up/0/0b/bin.jpg

پتانسیل و ظرفیت اکسیداسیون ، معیاری برای تعیین آلودگی فاضلابها

پتانسیل و ظرفیت اکسیداسیون آبها ، یکی از معیارهای مهم آلودگی آنهاست. بطوری که می‌دانیم اکسیژن محلول در آب ، عامل اساسی زندگی و رشد حیوانات و گیاهان است. زندگی این موجودات بستگی به حداقل اکسیژن محلول در آب دارد. ماهی بیش از سایر جانداران و بی مهره‌گان در درجه دوم و باکتریها کمتر از تمام موجودات آبزی به اکسیژن محلول در آب نیاز دارند. در یک آب معمولی که ماهی در آن پرورش می‌یابد، غلظت اکسیژن محلول نباید کمتر از 5 میلیگرم در لیتر باشد و این مقدار در آبهای سرد به 6 میلیگرم در لیتر افزایش می‌یابد.

در صورتی که مقدار اکسیژن محلول در آب کمتر از حداقل مجاز برای زندگی جانداران آبزی باشد، آن آب ، آلوده تلقی می‌گردد. وجود مواد آلی در آب ، موجب مصرف و تقلیل مقدار اکسیژن محلول می‌گردد. غالب ترکیبات آلی موجود در آب دارای کربن هستند و فعل و انفعال مهمی که در محیط آبی به کمک باکتریهای خاصی انجام می‌پذیرد به ترتیب زیر است:


در این واکنش به ازاء 12 گرم کربن ، 32 گرم اکسیژن مصرف می‌شود. اگر فرض کنیم که مقداری روغن که حاوی 12 گرم کربن بوده ، در آب ریخته شود، با در نظر گرفتن حداکثر مقدار اکسیژن محلول در آب در شرایط معمولی (میلیگرم در لیتر) این مقدار روغن آبی در حدود 3555 لیتر را فاقد اکسیژن نموده و به معنی دیگر کاملا آلوده می‌نماید. 

 

میزان مواد آلی در فاضلابها

بطوری که قابل پیش بینی است فاضلابها و پس آبها حاوی مقدار بسیار زیادی مواد آلی است. تقریبا آثار کلیه مواد مصرف در زندگی اجتماعی و همینطور صنایع ، در فاضلابها وجود دارد. تخلیه فاضلابها و پس آبها در آبهای معمولی آنها را به سرعت آلوده می‌کند و این در واقع زاییده وجود مقادیر بسیار زیاد مواد آلی در فاضلابها و پس آبها.

اکسیژن مورد نیاز جهت اکسیداسیون یک فاضلاب

اکسیژن مورد نیاز جهت اکسیداسیون یک فاضلاب ، پس آب و یا آب آلوده معیار مناسبی برای آگاهی از حدود مقدار مواد آلوده کننده موجود در آنهاست. دو روش تعیین میزان آلودگی که بر اساس یاده شده در بالا متکی هستند، تحت عناوین COD و BOD شناخته شده‌اند.

  • (BOD (Biochemical Oxygen Demand:
    BOD یک فاضلاب ، پس آب و یا آب عبارت است از میزان اکسیژن مور نیاز میکرو ارگانیسمها در اکسیداسیون بیوشیمیایی مواد آلی موجود در آن. در حقیقت BOD تعیین کننده مقدار اکسیژن مورد لزوم برای ثبوت بیولوژیکی مواد آلی نمونه مورد نظر خواهد بود. اگر BOD آبی در حدود 1 میلیگرم در لیتر باشد، آب خوب و اگر به حدود 3 برسد مشکوک و بیشتر از 5 ، آلوده است.
  • (COD (Chemical Oxygen Demand:
    COD یک فاضلاب ، پس آب و یا آب آلوده ، عبارت است از میزان اکسیژن مورد نیاز برای اکسیداسیون مواد قابل اکسیداسیون موجود در آن. مقدار COD معمولا با استفاده از یک عامل اکسید کننده قوی در محیط اسیدی قابل اندازه گیر است. تعیین BOD با وجود ارزش فراوان به همراه دو نکته ضعف اساسی است. اولی طولانی بودن مدت آزمایش و دومی امکان مسموم شدن میکرو ارگانیسمهای مورد نظر در تماس با مواد آلوده در این مدت طولانی ، از اینرو COD ارزش فراوانی پیدا می‌کند.

درجه بندی فاضلابها

فاضلاب آبها بر حسب مقدار BOD درجه بندی می‌شود. فاضلابهایی که BOD آنها به ترتیب در حدود 210 ، 350 و 600 میلیگرم در لیتر هستند، فاضلابهای ضعیف ، متوسط و قوی هستند. برای جلوگیری از آلودگی آبها در بیشتر نقاط جهان ، هیچ فاضلابی حتی بعد از تصفیه در صورتیکه BOD آن بیش از 20 میلیگرم در لیتر باشد، مجاز به ورود به جریانهای سطحی و یا زیر زمینی نیست.

img/daneshnameh_up/2/20/fazelab.gif

فاضلابهای غیر انسانی

باید دانست که در طبیعت تنها انسان نیست که با تولید فاضلاب یا پس آب باعث آلودگی آبها می‌شود. بلکه فعالیت حیوانات نیز در این آلوده سازی بسیار مؤثر است. در صورتیکه به عنوان مبنای مقایسه ، میزان آلودگی انسان را معادل یک BOD فرض کنیم، حیوانات دیگر نظیر اسب ، گاو ، گوسفند ، خوک و مرغ خانگی به ترتیب 11.3 ، 16.4 ، 2.5 ، 1.9 و 0.91 خواهند بود.

تخلیه بی رویه فاضلابهای صنعتی در آبهای سطحی

تخلیه بی رویه و پس آبهای صنعتی (و همینطور غیر صنعتی و کشاورزی) در آبهای سطحی ، موجب مرگ و میر حیوانات آبزی بخصوص ماهیها می‌گردد. جالب توجه است که تلاشی اجساد همین حیوانات خود مزید بر علت موجب آلودگی هر چه بیشتر می‌گردد. از دیگر اثرات مهم این فاجعه تبدیل فعالیت باکتریهای آب از حالت هوازی (Aerobic) یعنی توأم با مصرف اکسیژن به حالت بی هوازی (Anaerobic) و بدون نیاز به اکسیژن می‌باشد.

فعالیت باکتریهای بی هوازی ، توام با پیدایش نامطبوع و مواد قابل اعتراض است، بطوری که بوی زننده‌ای دارد و قابل اشتعال است. بدبو و بویی نظیر تخم مرغ گندیده دارد و ، سمی خطرناک بوده و بوی تند سیر می‌دهد. بطور کلی غالب محصولات از فعالیت باکتریهای بی هوازی برای زندگی دیگر موجودات بخصوص موجودات آبزی ، مضر است.

مواد شیمیایی ، ایجاد کننده اصلی فاضلاب صنعتی

از مهمترین و شناخته شده ترین مواد شیمیایی که در ابعاد وسیعی مصرف عمومی دارد و به علل مختلف ایجاد آلودگی می‌کند، عبارت از شوینده‌ها (Detergents) است. از حدود سالهای 1940 ، شوینده‌های مصنوعی وارد بازار مصرف شدند که مهمترین آنها عبارت بود از الکیل بنزن سولفانات. این نوع شوینده‌ها دارا یک نکته ضعف مهمی هستند که عبارت از عدم تجزیه آنها توسط مکرو ارگانیسمها است. وجود این مواد در آب باعث ایجاد کف می‌گردد و این کف باعث مشکلات فراوانی برای عمل تصفیه است و در ضمن باعث کندی عمل فتوسنتز می‌گردد.

استفاده از این شوینده‌ها بعدها در آمریکا و اروپا ممنوع شد تا سرانجام در سال 1965 شوینده جدیدی با نام LAS به بازار آمد که نکته ضعف مذکور را ندارد و توسط میکرو ارگانیسمها تجزیه می‌گردد. ترکیبات ازت دار نیز از طرق مختلف بویژه کودهای شیمیایی وارد فاضلابها می‌گردد. فسفر و ازت که از طریق فاضلاب وارد آب دریاچه‌ها می‌گردد و به علت تغذیه خوب گیاهان آبی پدیده‌ای به نام مسن شدن ایجاد می‌کند و ا ایجاد و ته نشین شدن لجن و گل و لای از عمق این دریاچه‌ها کاسته می‌شود و یکی از مهمترین اثرات نامطلوب این پدیده ، کاهش شدید اکسیژن آبهاست که منجر به تبدیل باکتریهای هوازی به بی هوازی می‌گردد.

مهمترین عوامل ضرورت عدم تخلیه فاضلابهای صنعتی به آبهای جاری و زیر زمینی

  • اسیدیته آزاد
  • مواد قلیایی قوی
  • غلظت زیاد مواد محلول
  • چربی و روغن
  • فلزات سنگن و مواد سمی
  • گازهای بدبو و سمی
  • مواد رادیو اکتیو
  • مواد معلق ، رنگ ، بو
  • ازدیاد دما
  • وجود میکرو ارگانیسمهای بیماری زا
[+] نوشته شده توسط سیده سوسن میرصانع در 4:28 بعد از ظهر | | قالب بلاگفا
دوشنبه بیست و یکم بهمن 1387

نگاه اجمالی

بشر از دیر باز با مفهوم ساده اسید آشنایی داشته است. در حقیقت این مواد، حتی قبل از آنکه شیمی به صورت یک علم در آید، شناخته شده بودند. اسیدهای آلی همچون سرکه و آبلیمو و آب غوره از قدیم معروف بودند. اسیدهای معمولی مانند اسید سولفوریک ، اسید کلریدریک و اسید نیتریک بوسیله کیمیاگران قدیم ساخته شدند و بصورت محلول در آب بکار رفتند. برای مثال اسید سولفوریک را جابربن حیان برای نخستین بار از تقطیر بلورهای زاج سبز (FeSO4.7H2O) و حل کردن بخارات حاصل در آب ، بدست آورد.
در طی سالیان متمادی بر اساس تجربیات عملی لاووازیه (A.L.Lavoisier) چنین تلقی می‌گردید که اجزاء ساختمان عمومی کلیه اسیدها از عنصر اکسیژن تشکیل گردیده است. اما بتدریج این موضوع از نظر علمی روشن و اعلام گردید که چنانچه این موضوع صحت داشته باشد، بر خلاف عقیده اعلام شده در مورد اکسیژن ، این عنصر هیدروژن است. در حقیقت ، تعریف یک اسید بنا به فرمول اعلام شده از سوی لیبیگ (J. Von Liebig) در سال 1840 عبارت است از:

موادی حاوی هیدروژن که می‌توانند با فلزات واکنش نموده و گاز هیدروژن تولید نمایند.

نظریه فوق مدت پنجاه سال مورد استناد بوده است. بعدها با پیشرفت علم شیمی ، مفاهیم جدیدی درباره اسیدها اعلام شده که در زیر به بررسی آنها خواهیم پرداخت.

خواص عمومی اسیدها

  • محلول آبی آنها یونهای پروتون آزاد می‌کند.
  • موادی هستند که از نظر مزه ترشند.
  • کاغذ تورنسل را سرخ رنگ می‌کنند.
  • با برخی فلزات مانند آهن و روی ترکیب شده گاز هیدروژن می‌دهند.
  • با قلیاها (بازها) واکنش نموده و املاح را تشکیل می‌دهند.
  • با کربنات کلسیم (مثلا به صورت سنگ مرمر) بشدت واکنش دارند، بطوریکه کف می‌کنند و گاز کربنیک آزاد می‌نمایند.

نظریه آرنیوس درباره اسیدها

زمانیکه مفاهیم یونیزاسیون ترکیبات شیمیایی در محلولهای آبی روشن گردید، مفهوم اسید بطور قابل ملاحظه‌ای تغییر پیدا کرد. مطابق تعریف آرنیوس ، اسید ماده ایست که در آب یونیزه می‌شود و یون +H3O که گاهی بصورت +H نیز نشان داده می‌شود، تولید می‌کند.

(HCl -----> H+ + Cl-(aq

آرنیوس قدرت اسیدی را نیز بر همین اساس تفسیر کرد و گفت که اسید قوی ، در محلولهای آبی تقریبا، بطور کامل یونیزه می‌شود. در صورتیکه که میزان تفکیک اسید ضعیف کمتر است. توجه کنید که مفهوم آرنیوس بر یون‌های آب استوار است. بر اساس تعریف آرنیوس می‌توان نقش اکسیدهای اسیدی را نیز تفسیر کرد.

اکسیدهای اسیدی

اکسیدهای بسیاری از غیرفلزات با آب واکنش داده و اسید تولید می‌کنند، در نتیجه این مواد را اکسیدهای اسیدی یا ایندرید اسید می‌نامند.
(N2O5(s) + H2O → H+ + NO3(aq 

مفهوم آرنیوس ، به علت تاکید آن بر آب و واکنشهای محلول‌های آبی ، با محدودیت رو‌به‌روست.

نظریه برونشتد- لوری درباره اسیدها

در سال 1923، یوهان برونشتد و تامس لوری ، مستقل از یکدیگر مفهومی گسترده‌تر برای اسیدها و بازها بیان کردند. بر اساس تعریف ، برونشتد - لوری ، اسید ماده ای است که یک پروتون به باز می‌دهد. اسیدها ممکن است مولکول یا یون باشند. با حذف پروتون ، اسید به باز (باز مزودج اسید 1) تبدیل می‌شود و با گرفتن پروتون ، باز اولیه ، یعنی باز 2 به اسید2 (اسید مزدوج باز 2) تبدیل می‌شود.
اسید 2 + باز 1 <----- اسید 1 + باز 2

قدرت اسیدها ، بر میل آنها برای از دست دادن یا گرفتن پروتون استوار است. هر چه اسید قویتر باشد، باز مزدوج آن ضعیفتر است. در یک واکنش ، تعادل در جهت تشکیل اسید ضعیفتر است. اسید پرکلریک ، HClO4 ، قویترین اسید است، و باز مزدوج آن ، یعنی یون پرکلرات ، -ClO4 ، ضعیفترین باز می‌باشد و H2 ، ضعیفترین اسید و باز مزدوج آن یعنی یون هیدرید ، +H قویترین باز می‌باشد.

نظریه لوییس درباره اسیدها

گیلبرت لوییس مفهوم گسترده‌تری برای اسیدها در سال 1938 پیشنهاد داد که پدیده اسید - باز را از پروتون رها ساخت. طبق تعریف لوییس ، اسید ماده‌ای است که بتواند با پذیرش یک زوج الکترون از باز ، یک پیوند کوولانسی تشکیل دهد. در نظریه لوییس به مفهوم زوج الکترون و تشکیل پیوند کووالانسی تاکید می‌شود. تعریف لوییس در مورد اسیدها بسیار گسترده‌تر از آن است که برونشتد عنوان نموده است. ترکیبات شیمیایی که می‌توانند نقش اسید لوییس داشته باشند، عبارتند از:

  • مولکولها یا اتمهایی که هشت‌تایی ناقص داشته باشند.
    (BH3 + F- → BH4-(aq

 

  • بسیاری از کاتیونهای ساده می‌توانند نقش اسید لوییس داشته باشند.
    Cu+2 + 4NH3 → Cu(NH3)4+2
  • برخی از اتم‌های فلزی در تشکیل ترکیباتی مانند کربونیل‌ها که از واکنش فلز با مونوکسید کربن تولید می‌شود، نقش اسید دارند:
    Ni + 4CO → Ni(CO)4
  • ترکیباتی که اتم مرکزی آنها تونایی گسترش لایه ظرفیتی خود را داشته باشند ، در واکنشهایی که این گسترش عملی شود، نقش اسید دارند، مثلا در واکنش مقابل ، لایه ظرفیتی اتم مرکزی (Sn) از 8 به 2 الکترون گسترش یافته‌است.
    (SnCl4 + 2Cl- → SnCl6-2(aq
  • برخی ترکیبات به علت داشتن یک یا چند پیوند دو گانه در مولکول ، خاصیت اسیدی دارند. مثلا CO2

قدرت اسیدی و ساختار مولکولی

به منظور بررسی رابطه بین ساختار مولکولی و قدرت اسیدی ، اسیدها را به دو نوع تقسیم می‌کنیم: هیدریدهای کووالانسی و اکسی ‌اسیدها.

هیدریدها

برخی از ترکیبات کووالانسی دوتایی هیدروژن‌دار (مانند HCl , H2) اسیدی هستند. دو عامل بر قدرت اسیدی هیدریدیک عنصر موثر است: الکترونگاتیوی عنصر و اندازه اتمی عنصر. قدرت اسیدی هیدریدهای عناصر یک تناوب ، از چپ به راست و همسو با الکترونگاتیوی عناصر ، افزایش می‌یابد. یک عنصر الکترونگاتیو ، الکترونهای بیشتری از هیدروژن می‌گیرد و خروج آن به صورت یک پروتون را سرعت می‌بخشد.

قدرت اسیدی هیدریدهای عناصر یک گروه، با افزایش اندازه اتم مرکزی افزایش می‌یابد. در تناوب دوم: NH3>H2O>HF در گروه VI به اینصورت است:

H2Te > H2Se > H2S > H2O

 

اکسی ‌اسیدها

در این ترکیبات ، هیدروژن اسیدی به یک اتم O متصل است و تغییر در اندازه این اتم بسیار ناچیز است. بنابراین عامل کلیدی در قدرت اسیدی این اکسی‌اسیدها، به الکترونگاتیوی اتم Z مربوط می‌شود: H-O-Z .

اگر Z یک اتم غیرفلز با الکترونگاتیوی بالا باشد، سهمی در کاهش چگالی الکترونی پیرامون اتم O (علی رغم الکترونگاتیوی شدید اکسیژن) را دارد. این پدیده باعث می‌شود که اتم اکسیژن، با کشیدن چگالی الکترونی پیوند H-O از اتم H ، تفکیک آن را سرعت ببخشد و ترکیب را اسیدی بکند. هیپوکلرواسید ، HOCl ، اسیدی از این نوع است.

هرچه الکترونگاتیوی Z بیشتر باشد، الکترونهای پیوند H-O به میزان بیشتری از اتم H دور می‌شوند و حذف پروتون آسان‌تر است: HOCl > HOBr > HOI . در اکسی ‌اسیدهایی که اتمهای اکسیژن بیشتری به Z متصل باشند، قدرت اسیدی با افزایش n ، زیاد می‌شود.

مهمترین اسیدهای قوی

مولکولهای این اسیدها و در محلولهای آبی رقیق کاملا یونیزه است. اسیدهای قوی متعارف عبارتند از: اسید کلریدریک ، یدیدریک ، نیتریک ، سولفوریک ، پرکلریک است.

مهمترین اسیدهای ضعیف

یونیزاسیون این اسیدها در آب کامل نمی‌باشد و هرگز به 100% نمی‌رسد. مثال متعارف آنها ، اسید استیکاسید کربنیک ، اسیدفلوریدریک ، اسید نیترو و تا حدودی اسید فسفریک است. 

برخی از کاربردهای اسیدها

اسید سولفوریک

یکی از اسیدهای معدنی قوی با فرمول H2SO4 ، مایعی روغنی‌شکل و بی‌رنگ است. یک متاع سودمند صنعتی است که از آن در حد وسیعی در پالایش نفت و در کارخانجات تولید کننده کودها ، رنگها ، رنگدانه‌ها ، رنگینه‌ها و مواد منفجره استفاده می‌شود.

اسید استیک

یک اسید آلی بصورت مایعی تند و بی رنگ با فرمول CH3COOH ، که اساس ترشی سرکه نیز می‌باشد. قسمت اعظم اسیداستیک تولیدی دنیا ، مصرف واکنش با الکلها به منظور تولید استرهایی می‌گردد که از آنها بعنوان بهترین حلال‌ها در رنگ و جلا استفاده می‌شود. همچنین در کارخانجات داروسازی، عمل آوردن لاستیک طبیعی و تهیه چرم مصنوعی و به عنوان حلال برای بسیاری از ترکیبات آلی از اسید استیک استفاده می‌شود.

اسید نیتریک

یک اسید قوی معدنی با فرمول HNO3 می‌باشد که این اسید در کارخانجات تولید کودهای نیترات و فسفات آمونیوم ، مواد منفجره نیترو ، پلاستیکها ، رنگینه‌ها و لاکها کاربر دارد.

اسید سولفونیک

این اسیدها با فرمول عمومی HSO3R که R می‌تواند متان یا بنزن و ... باشد، محلول در آب ، غیر فرار و جاذب الرطوبه‌اند و به عنوان عوامل امولسیون کننده ، مواد افزودنی و روغنهای روان ‌کننده و به عنوان جلوگیری از خوردگی و زنگ زدگی استفاده می‌گردد.

اسید کلریدریک

یکی از اسیدهای معدنی قوی با فرمول HCl ، که مایعی بی‌رنگ یا اندکی زردرنگ ، بسیار خورنده و غیر آتشگیر است. این اسید در آب ، الکل ، بنزن حل می‌شود و در اسیدی کردن (فعال کردن) چاههای نفت ، پاک کردن رسوبات دیگهای بخار ، صنایع غذایی ، تمیز کردن فلزات و ... استفاده می‌شود.

[+] نوشته شده توسط سیده سوسن میرصانع در 4:19 بعد از ظهر | | قالب بلاگفا
دوشنبه بیست و یکم بهمن 1387

معنی لغوی کائوچو ، درخت گریان است.

تاریخچه

از نظر قدمت تاریخی برای صنایع لاستیک منشا دقیقی نیست. اما اعنقاد این است که بومیان آمریکای مرکزی از برخی از درختان شیرابه‌هایی استخراج می‌کردند که این شیرابه‌ها که بعدها نام " لاتکس" را بخود گرفت اولین مواد لاستیکی را تشکیل می‌دادند.

پدیده ولکانیزاسیون

در سال 1829 ، "گودییر" از آمریکا و "مکین تاش" از انگلستان ، این دو متوجه شده‌اند که در اصل مخلوط کردن لاتکس طبیعی با سولفور و حرارت دادن آن، ماده‌ای قابل ذوب و قابل شکل دادن ایجاد می‌شود که می‌توان از آن، محصولات مختلفی از قبیل چرخ ارابه یا توپ تهیه کرد.

این پدیده همان پدیده ولکانیزاسیون است که در طی آن لاستیک اکسیده می‌شود و سولفور کاهیده و به سولفید تبدیل می‌شود. البته این عمل در دمای 110 درجه سانتیگراد تهیه می شود. نتیجه این کشف تولید مواد لاستیکی مثل لاستیکهای توپر، پوتین و ... است.

کائوچوی طبیعی و مصنوعی

کائوچوی طبیعی در شیره درختی به نام هوا ، Hevea وجود دارد و از پلیمر شدن هیدروکربنی به نام 2- متیل- 1 و 3- بوتادین معروف به ایزوپرن بوجود می‌آید. با توجه باینکه در فرمول ساختمانی کائوچو یا لاتکس طبیعی هنوز یک پیوند دوگانه وجود دارد، به همین دلیل وقتی کائوچو را با گوگرد یا سولفور حرارت دهیم، این منومرها ، پیوند پی را باز می‌کنند و با ظرفیت های آزاد شده ، اتم گوگرد را می‌گیرند. در نتیجه کائوچو به لاستیک تبدیل می‌گردد.

حرارت دادن کائوچو با گوگرد و تولید لاستیک را اصطلاحا ولکانیزاسیون Vulcanizataion می‌نامند. به همین دلیل، لاستیک حاصل را نیز، "کائوچوی ولکانیزه" گویند. چند نوعی کائوچوی مصنوعی نیز ساخته شده‌اند که از مواردی مانند
1 و 3- بوتادی ان و جسمی به نام 2- کلرو- 1 و 3- بوتادین معروف به "کلروپرن" و جسم دیگری به فرمول 2 و 3- دی متیل- 1 و 3- بوتادین بتنهایی یا مخلوط درست شده‌اند. کلروپرن به راحتی پلیمریزه شده و به نوعی کائوچوی مصنوعی به نام "نئوپرن" تبدیل می‌شود.

تکامل در صنعت لاستیک

بعدها در سال 1888 خواص مکانیکی لاستیکهای تهیه شده توسط گودییر و مکین تاش با استفاده از کربن سیاه به عنوان یک ماده پرکننده و افزودنی بسیار بهبود بخشیده شده و در نتیجه لاستیکهای بادی دانلوب ، "تیوپ" تهیه شد. بعد از آن لاستیکهای سنتزی تهیه و به بازار عرضه شد مانند ایزوپرن ، بوتادی ان و لاستیکهای تیوکل.

بعدها لاستیکهای سنتزی مثل کوپلیمرهای استیرن و بوتادی‌ان تهیه شد که در سال 1941 مصرف آن صفر بود. اما در سال 1945 مصرف آن 700000000 می‌رسید. به موازاتی که مصرف لاستیکهای سنتزی بالا می‌رود، مصرف لاستیکهای طبیعی پایین می‌آید. چون لاستیکهای سنتزی اقتصادی‌تر هستند.

[+] نوشته شده توسط سیده سوسن میرصانع در 4:6 بعد از ظهر | | قالب بلاگفا
دوشنبه بیست و یکم بهمن 1387

دید کلی

این نوع خازن‌ها شامل مایع یا خمیری است که آن را الکترولیت می‌نامند. در این الکترولیت ، جوشن آلومینیومی جای داده شده ‌است که سطح نسبتا زیادی دارد. ترکیب ماده الکترولیت متفاوت است و هر کارخانه ترکیب مخصوص خود دارد که به‌صورت مایع یا خمیر داخل ظرف استوانه‌ای شکل آلومینیومی آب‌بندی شده قرار دارد.

عملکرد

وقتی که فشاری بین الکترولیت و آلومینیوم گذاشته می‌شود (آلومینیوم به پتانسیل مثبت متصل می‌شود) ، جریانی که برقرار می‌شود، باعث تجزیه الکترولیت می‌گردد و پوششی از آلومین (اکسید آلومینیوم) به دور جوشن آلومینیومی بسته می‌شود و چون به این ترتیب آن را عایق می‌کند، باعث قطع شدن جریان می‌گردد. چون ضخامت این پوشش کم است (چند هزارم میلی‌متر) ، بخوبی فهمیده می‌شود که ظرفیت این خازن ها که آلومینیوم و الکترولیت دو جوشن آن را تشکیل می‌دهند تا چه اندازه زیاد است.

خازنهای الکترولیت بر خلاف خازنهای معمولی"پلاریزه" یعنی جهت‌دار هستند و اجبارا باید قطب مثبت فشار را به آلومینیوم متصل کرد. اگر قطبها را برعکس متصل کنیم، خطر از بین بردن خازن پیش می‌آید. بنابراین نباید به چنین خازنی فشار متناوب وارد کرد. هر نوع از این خازنها برای فشار معین و کار مشخص از طرف کارخانه سازنده ساخته شده ‌است و از حدود آن نباید تجاوز کرد. حتی ظرفیت این خازن بستگی به فشاری که به دو جوشن آن گذاشته می‌شود، دارد. هر چه فشار بالاتر رود، ظرفیت کم می‌شود.

img/daneshnameh_up/a/a5/khazen_1.jpg


خازن الکترولیت تحت فشار بالا

اگر خازن الکترولیت تحت فشار ، لحظه ای زیادتر از حد مجاز قرار گیرد، انفجار بوجود می‌آید (یعنی دو جوشن ، جرقه زده و صدای انفجار بگوش می‌رسد). ولی خطر زیادی متوجه خازن نمی‌شود، زیرا بزودی پوشش ، آلومین دوباره تشکیل می‌گردد. در مورد خازنهای کاغذی اینطور نیست، زیرا کاغذ در اثر جرقه می‌سوزد و تبدیل به کربن می‌شود و باین ترتیب خاصیت عایق بودن خود را از دست می‌دهد و کم و بیش دو جوشن را به یکدیگر اتصال کوتاه می‌دهد.

مشخصات خازنهای الکترولیتی

  • خازنهای الکترولیتی در اندازه‌های مختلف وجود دارد و از لحاظ اتصال به مدار دو قطب مثبت و منفی کاملا مشخص است تا بطور صحیح به مدار بسته شود و گرنه غشاء نازک عایق آن از میان می‌رود و به اجزائی از مدار که قبل از خازن قرار دارد آسیب می‌رسد.
  • خازنهای الکترولیت با ظرفیت و ولتاژ مجاز زیاد دارای حجم نسبتا بزرگی است و بوسیله سیم پیچ و مهره و پولک یا بست روی شاسی نصب و محکم می‌شود. قطب مثبت با رنگ قرمز و قطب منفی با رنگ سیاه کاملا مشخص است. گاهی نیز قطب مثبت به بدنه آلومینیومی متصل است و گیره مخصوص ندارد.
  • خازنهای الکترولیت معمولا دارای جلد فلزی هستند که به این ترتیب با ماده الکترولیت ارتباط داشته و به قطب منفی متصل می‌شوند.
  • ظرفیت خازنهایی که بیشتر مورد استفاده قرار می‌گیرند، بین 8 تا 32 میکروفاراد است.

کاربرد

  • خازنهای الکترولیتی بیشتر در جایی که احتیاج به ذخیره مقدار انرژی زیادی باشد، استفاده می‌شود. از این نوع خازنها تا ظرفیت 20000 میکروفاراد با حجم نسبتا کوچک می‌توان تهیه نمود.
  • این خازنها اغلب به عنوان صافی بکار می‌روند.
  • اغلب در فرکانسهای پایین ، برای دکوپلاژ استفاده می‌شود. بخصوص در مورد دکوپلاژ مقاومتهای پلاریزاسیون.
[+] نوشته شده توسط سیده سوسن میرصانع در 3:55 بعد از ظهر | | قالب بلاگفا
دوشنبه بیست و یکم بهمن 1387

آهن گالوانیزه ، آهنی است که با روی پوشانده شده باشد. این آهن ، حتی اگر پوشش آن هم شکستگی پیدا کند، از زنگ زدن محفوظ می‌ماند.

ماهیت آهن گالوانیزه

در آهن گالوانیزه ، بین آهن و روی ، پیلی الکتروشیمیایی تشکیل می‌شود که در آن روی به جای آهن به عنوان آند بکار می‌رود و آهن به عنوان کاتد. روی در آند اکسید می‌شود چون فلزی پست‌تر یا فعالتر از آهن است و دارای پتانسیل احیاء کمتری از آهن است و پتانسیل اکسید بیشتری از آن دارد.

حلبی

در حلبی هایی که از آن ، قوطی می‌سازند، عمل معکوسی انجام می‌شود. در حلبی ، بر روی آهن ، پوشش قلع بکار رفته است و عمل معکوس آهن گالوانیزه انجام می‌شود. چون آهن فلزی فعالتر از قلع است و پتانسیل احیاء قلع بیشتر از آهن است و به عنوان کاتد در حلبی به کار می‌رود و آهن آند می‌شود. البته در صورتی که پوشش قلع بشکند، خوردگی آهن در زیر این پوشش پیش می‌رود.

علت استفاده از آهن گالوانیزه

علت استفاده و ایجاد آهنهای گالوانیزه ، پدیده خوردگی آهن است. خوردگی آهن زیانهای اقتصادی فاحشی دارد. هزینه سالانه تعویض آهن‌ آلات زنگ زده در جهان مقادیر زیادی را بخود اختصاص می‌دهد. فرآیند زنگ زدن آهن ماهیت الکتروشیمیایی دارد.

خوردگی یا زنگ زدن آهن فقط در حضور اکسیژن و آب صورت می‌گیرد. در جایی بر سطح جسم آهنی، اکسایش آهن انجام می‌شود و آند را تشکیل می‌دهد و در جایی دیگر سطح آن جسم که (O2(g و H2O وجود دارد، کاهش انجام می‌شود و کاتد را تشکیل می‌دهد و در نتیجه این عمل، ایجاد یک سلول ولتایی یا پیل ولتایی یا الکتروشیمیایی بسیار کوچک است. الکترونهای تولید شده در ناحیه آندی در میان آهن بسوی ناحیه کاتدی حرکت می‌کند.

کاتیونها ، یعنی یونهای Fe+2 که در آن آند تولید شده‌اند در آب موجود بر سطح جسم بسوی کاتد می‌روند. آنیونها یعنی یونهای -OH که در کاتد تولید شده‌اند، به طرف آند حرکت می‌کنند. این یونها در جایی میان دو ناحیه بهم می‌رسند و Fe(OH)2 بوجود می‌آورند.

اما "آهن II هیدروکسید" در حضور رطوبت و اکسیژن پایدار نیست. این هیدروکسید به نوبه خود اکسید و به "آهن III هیدروکسید" تبدیل می‌شود که در واقع "آهن III اکسید آبپوشیده" ، Fe2O3.xH2O یا زنگ آهن

جاهایی که جسم آهنی زنگ زده گود شده ‌است ، نواحی آندی یا جاهایی هستند که آهن بصورت یونهای Fe+2 در محلول وارد می‌شوند. نواحی کاتدی جاهایی هستند که بیشتر در معرض رطوبت و هوا هستند ، زیرا (O2(g و H2O در واکنش کاتدی دخالت دارند. زنگ آهن همیشه در نقاطی نسبتا دورتر از جاهای گود شده (میان نواحی آندی و کاتدی) ایجاد می‌شود.
است.

اثر آب نمک

آب نمک ، زنگ زدن را تسریع می‌کند، زیرا یونهای موجود در آب به انتقال جریان در سلولهای ولتایی یا پیلهای ولتایی کوچکی که بر سطح آهن برقرار شده‌است، کمک می‌کند. بنظر می‌رسد که بعضی از یونها ، مثلا -Cl وکنشهای الکترودی را کاتالیز می‌کنند.

img/daneshnameh_up/b/b6/GalvanizationWire.jpg


اثر ناخالصیها

ناخالصیهای موجود در آهن نیز سبب پیشرفت زنگ زدگی می‌شوند، آهن بسیار خالص به سرعت زنگ نمی‌زند. بعضی از انواع ناخالصیها، کشیدگی ها و نقصهای بلوری موجود در آهن با جذب الکترونها آنها را از ناحیه‌هایی که جایگاههای آندی می‌شوند، دور می‌کنند.

طریقه گالوانیزاسیون

در گالوانیزاسیون ، فلز فاسد شدنی را در مذاب یک فلز فاسد ناشدنی فرو می‌برند و بیرون می‌آورند تا سطح آن از یک لایه فلز فاسد نشدنی پوشیده شود. مثلا ورقه های نازک آهنی را در مذاب فلز روی فرو می‌برند و بیرون می‌آورند تا سطح آنها از فلز روی پوشیده شود و آهن سفید یا آهن گالوانیزه تهیه شود.

موارد استفاده از آهن گالوانیزه

از آهن گالوانیزه در ساختن لوازمی مثل لوله بخاری ، کانال کولر ، کابینت آشپزخانه ، شیروانی منازل ، لوله‌های آب و هر جا که احتمال خوردگی آهن و خسارت وجود دارد، استفاده می‌شود.

[+] نوشته شده توسط سیده سوسن میرصانع در 3:51 بعد از ظهر | | قالب بلاگفا
دوشنبه بیست و یکم بهمن 1387

مقدمه

آمینها ، دسته وسیعی از مواد آلی نیتروژندار را تشکیل می‌دهند که در آنها ، اتم نیتروژن به یک یا دو یا سه گروه آلکیل و یا آریل متصل می‌باشد. آمینها بسته به تعداد گروههای موجود ، بعنوان نوع اول ، دوم و سوم تقسیم‌بندی می‌شوند. در این بخش ، آمینهای آلیفاتیک مورد مطالعه و بررسی قرار می‌گیرند.


تصویر
اسید آمینه گلیسین و گروه امینی

نامگذاری آمینها

برای نامگذاری آمینها ، روشهای متعددی مورد استفاده قرار می‌گیرند. ساده‌ترین و مرسوم‌ترین آنها ، روش استفاده از کلمه آلکیل آمین یا آریل آمین می‌باشد. مانند:

  • C6H11-NH2: سیکلو هگزیل آمین
  • PhCH2)2NH): دی بنزیل آمین
  • CH3-NH2: متیل آمین

برای نامگذاری آمینهای نوع اول ، از آمینو آلکان نیز استفاده می‌شود، مانند:

  • C5H9NH2: آمینو سیکلو پنتان
  • C2H5-NH2: آمینو اتان

برخی از آمینهای حلقه‌ای نام خاصی دارند و معمولا از این اسامی برای معرفی آنها استفاده می شود. آمینهای حلقه‌ای با نام azacycloalkane نیز مشخص می‌شوند.

خواص آمینهای آلیفاتیک

تعدادی از آمینهای آلیفاتیک مانند 1 ,4- دی‌آمینو بوتان (Putrescine) و 1 ,5- دی‌آمینو پنتان (Codaverine) سمّی هستند و از فاسد شدن گوشت و ماهی ایجاد می‌شوند. برخی دیگر مانند 2- متیل آزیریدین ، سرطانزا تشخیص داده شده‌اند.
با وجود این ، بسیاری از آمینها و مشتقات آنها ، دارای اثرات زیستی می‌باشند. از آن جمله پیپرازین (ضد انگل) ، هیستامین (تنگ کننده رگها) و نواکائین (بیهوش کننده) را می‌توان نام برد.

خواص فیزیکی و خصلت اسیدی و بازی آمینهای آلیفاتیک

آمینهای نوع اول ، دوم و سوم می‌توانند بعنوان دهنده و یا پذیرنده پیوند هیدروژنی عمل نمایند. ولی پیوند هیدروژنی آنها ضعیفتر از الکلها و آب می‌باشد و به همین علت ، آمینها نقطه ذوب و جوش پایینتری نسبت به الکلهای هم‌کربن دارند. مثلا نقطه جوش متیل آمین ، 6- درجه و متانول ، 64 درجه سانتی‌گراد می‌باشد. آمینهای کوچک با هر نسبتی در آب حل می‌شوند.

آمینها در مقایسه با الکل ، اسیدهای ضعیفتری می‌باشند، ولی با وجود این می‌توان به کمک بازهای قوی عمل پروتون‌گیری از آمینها انجام داد. خاصیت بازی آمینها قابل ملاحظه می‌باشد و قدرت بازی آنها بوسیله استخلاف کنترل می‌شوند. لازم به یادآوری است که آلکیل آمینها درمقایسه با آریل آمینها قدرت بازی بیشتری از خود نشان می‌دهند.


تصویر
ساختمان یک نوع آمین

روشهای تهیه آمینهای آلیفاتیک

  • از واکنش آمونیاک یا آمینهای نوع اول و دوم با هالیدهای آلکیل ، می‌توان آمینها را تهیه نمود. از فعل و انفعال آمونیاک با هالیدهای آلکیل ، ابتدا منوآلکیل آمین تولید می‌شود. برای جلوگیری از ادامه واکنش ، لازم است که غلظت هالید آلکیل کم انتخاب شود. معمولا نوع محصول واکنش به مدت زمان انجان واکنش ، طبیعت ، غلظت هالید آلکیل ، نوع هالوژن و نوع کربنی که هالوژن روی آن قرار گرفته است، بستگی دارد. با کلریدها ، واکنش قابل کنترل‌تر می‌باشد و در صورت استفاده از یدید آلکیل ، آمونیوم چهارتایی تشکیل می‌شود. اگر غلظت CH3I کم باشد، می‌توان آمینهای نوع دوم یا سوم را سنتز نمود.
  • می‌توان با انجام واکنش آمیدور سدیم با یدیدهای آلکیل نوع اول در دمای پایین ، آمین نوع اول را بدست آورد. هالیدهای آلکیل نوع دوم و سوم به واکنش حذفی منجر می‌شوند و لذا برای تهیه آمین مربوطه مناسب نمی‌باشند.

واکنشهای شیمیایی آمینهای آلیفاتیک

آمونیاک و آمینهای آلیفاتیک در نقش بازهای قوی ، هسته خواه قوی و همچنین بعنوان اسید ضعیف در واکنشهای گوناگون شرکت می‌کنند. ساده‌ترین واکنش آمینها ، پروتون‌دار شدن آنهاست که به نمک مربوطه منجر می‌شود. به همین علت ، معمولا از آمینها جهت جذب اسیدهای آزاد شده در فعل و انفعالات شیمیایی استفاده می‌شود.

[+] نوشته شده توسط سیده سوسن میرصانع در 3:45 بعد از ظهر | | قالب بلاگفا
دوشنبه بیست و یکم بهمن 1387

اسیدهای کربوکسیلیک ، ترکیباتی هستند که دارای عامل -–COOH می‌باشند. ممکن است به هیدروژن ، آلکیل ، آریل ، گروههای اشباع شده ، اشباع نشده استخلاف‌دار یا بدون استخلاف وصل شده باشد.



تصویر

نام‌گذاری اسیدهای کربوکسیلیک

اسیدهای کربوکسیلی زنجیری از دیرباز شناخته شده‌اند و لذا نام معمولی دارند. نام آنها از ماده یا منبعی که بدست آمده‌اند، گرفته شده است. در نامگذاری معمولی جهت مشخص کردن محل استخلافها از α و β و γ و ... نیز استفاده شده است. در این روش ، اولین کربن متصل به عامل اسیدی α و دومی β و... می‌باشد.

  • CH3COOH: استیک اسید
  • HCOOH: فرمیک اسید
  • PhCOOH: بنزوئیک اسید

نام‌گذاری رسمی

در نامگذاری رسمی ، ابتدا طولانی‌ترین زنجیری را که عامل اسیدی روی آن قرار گرفته ، مشخص نموده و شمارش از طرف عامل اسیدی انجام می‌گیرد. پس از مشخص کردن استخلافهای و محل آنها ، نام زنجیر اصلی را قید و سپس به آخر آن ، پسوند اوئیک (oic) اضافه می‌گردد. اگر زنجیر دارای پیوند دوگانه باشد، ذکر نوع ایزومر هندسی نیز لازم است.

خواص فیزیکی اسیدهای کربوکسیلیک

اسیدهای کربوکسیلیک ، مولکولهای قطبی می‌باشند و می‌توانند مثل الکل‌ها و آمین‌ها ، پیوند هیدروژنی ایجاد نمایند. نقطه جوش اسیدهای کربوکسیلیک حتی از الکلهای هم‌کربن نیز بالاتر است. بعنوان مثال ، نقطه جوش بوتانل و اسید بوتیریک به ترتیب 177,7 درجه سانتی‌گراد و 162درجه سانتی‌گراد می‌باشد. بالا بودن نقطه جوش اسید به پیوند هیدروژنی قوی و تشکیل دی‌مر اسید نسبت داده می‌شود. بالا بودن نقطه ذوب همه اسیدها در نقایسه با الکل‌ها نیز بدین گونه توجیه می‌شود.

اسیدهای یک تا چهار کربنه در آب بخوبی محلوند. اسید پنج کربنه (اسید والریک) نیز تا حدودی در آب حل می‌شود، ولی اسیدهای سنگینتر کم‌محلولند. بدون شک ، محلول بودن اسیدهای کربوکسیلیک کوچک در آب ، بعلت تشکیل پیوند هیدروژنی بین گروه کربوکسیلی و مولکوهای آبکی باشد.

با وجود این ، اسیدهای کربوکسیلیک در حلالهای غیرقطبی مثل اتر ، بنزن و در حلالهای با قطبیت کمتر مانند الکل نیز حل می‌شوند. در طیف سنجی مادون قرمز گروه کربونیل اسیدهای کربوکسیلیک در 1700-1725cm-1-1 ظاهر می‌گردد.
جذب می‌دهند و جذب مربوط به پیوند هیدروژنی در 2500-3500cm

خاصیت اسیدی اسیدهای کربوکسیلیک

اگرچه اسیدهای کربوکسیلیک در مقایسه با اسیدهای معدنی مثل اسید سولفوریک و اسید کلریدریک و اسید نیتریک بسیار ضعیف می‌باشند، ولی در هر صورت ، در مقایسه با الکل‌ها ، آب ، آمونیاک و استیلن‌ها از اسیدیته قوی‌تری برخوردارند.

اسیدیته اسیدهای آلی به ساختمان اسید و طبیعت عوامل و گروههای موجود در روی آلکیل یا آریل بستگی دارد. مثلا تری‌کلرو استیک اسید حدود 103*15 بار قوی‌تر از استیک اسید می‌باشد. این اسیدیته زیاد و قابل ملاحظه به خاصیت الکترون‌گیری هالوژن ، مربوط می‌باشد. بطور کلی ، گروههای گیرنده الکترون ، قدرت اسیدی را افزایش می‌دهند و برعکس گروههای دهنده ، موجب تضعیف اسیدیته می‌گردند.


تصویر


روشهای صنعتی تهیه اسیدهای کربوکسیلیک

در بین اسیدهای کربوکسیلیک ، از اسید استیک زیاد استفاده می‌شود و این ماده به روش صنعتی و از اکسید شدن آلدئید استیک یا هیدروکربنها و یا از واکنش متانل با منوکسید کربن در حضور کاتالیزور (رودیم- ید) بدست می‌آید. بخش عمده اسید استیک که بعنوان سرکه (محلول رقیق اسید استیک در آب) مصرف می‌شود، از اکسید شدن اتانول بوسیله آنزیم‌ها در شرایط هوازی (در حضور اکسیژن) تهیه می‌شود.
یکی از منابع مهم تهیه اسیدهای کربوکسیلیک ، منابع گیاهی و حیوانی می‌باشد. از استرهای بدست آمده از منابع ذکر شده ، اسیدهای 6 تا 18 کربنی و با درجه خلوص بالا بدست می‌آید. برای تهیه اسیدهای آروماتیک مانند اسید بنزوئیک و یا اسید فتالیک در مقیاس صنعتی ، از روش اکسید شدن استفاده می‌شود.

در این روش ، تولوئن و گزیلن تولید شده از واکنشهای Reforming بوسیله اکسید کننده‌های مناسب اکسید می‌شود. اکسید کردن آلکیل بنزن ، مشکل‌تر از اکسید کردن اولفین‌ها می‌باشد و لذا فرایند اکسید کردن با استفاده از حرارت انجام داده می‌شود. آلکیل بنزن‌ها از طریق هالوژن دار شدن و هیدرولیز هم به اسید مربوط تبدیل می‌شوند.

[+] نوشته شده توسط سیده سوسن میرصانع در 3:37 بعد از ظهر | | قالب بلاگفا
دوشنبه بیست و یکم بهمن 1387

آلکنها ، دسته بزرگی از هیدروکربنها را شامل می شوند که به هیدروکربنهای غیر اشباع (unsaturated) موسومند. تعداد هیدروژنهای این ترکیبات ، کمتر از آلکنهای هم کربن است. آلکنها ممکن است یک یا چند پیوند دوگانه مجزا و دور از هم و یا مزدوج داشته باشند.



تصویر
ساختمان اتیلن

ساختمان پیوند دوگانه کربن- کربن در آلکنها

اتیلن

اتیلن کوچکترین عضو خانوده آلکنها و به فرمول C2H4

هرگاه ما چهار اتم هیدروژن و دو اتم کربن sp2 را کنار هم مرتب کنیم، شکلی ایجاد می‌شود که در آن ، هر اتم کربن در سه پیوند σ (سیگما) شرکت دارد. برای رسیدن به کربن به حالت اکتت ، لازم است که سومین اوربیتال 2p اتمهای کربن همپوشانی کرده ، پیوند ایجاد کنند. این پیوند که از همپوشانی اوربیتالهای p کربن ایجاد می‌شود، از نظر شکل و انرژی ، با پیوند σ متفاوت می‌باشد و به پیوند π موسوم است که از دو قسمت تشکیل شده است.

یک ابرالکترونی در بالای سطح مولکول و ابر الکترونی دیگر ، در پایین سطح قرار می‌گیرد. وقتی این ساختمان می‌تواند انجام شود که تمام اتمهای شرکت کننده در ساختمان اتیلن در یک سطح قرار گیرند. پس مولکول اتیلن لازم است یک مولکول مسطح باشد. مسطح بودن مولکول اتیلن بوسیله روشهای طیف سنجی و پراش الکترونی مورد تایید قرار گرفته است.
می‌باشد که دو اتم هیدروژن کمتر از آلکان هم‌کربن (اتان) دارد. ما در اینجا به بررسی ساختمان اتیلن می‌پردازیم تا با ساختار ترکیبات اشباع نشده آشنا شویم. بررسی ساختمان اتیلن به طریق کوانتوم مکانیکی نشان داده است که کربن ، برای اینکه در ساختمان اتیلن شرکت نماید، لازم است که با استفاده از اوربیتالهای 2s و دو اوربیتال 2p خود ، سه اوربیتال هیبریدی یکسان بوجود آورد که این اوربیتالهای هیبریدی ، در یک سطح قرار می‌گیرند، بنحوی که اتم کربن ، در مرکز یک مثلث قرار گرفته و زوایای بین اوربیتالهای هیبریدی ، 120 درجه تخمین زده شده است.

پروپن

پروپن به فرمول C3H6 ، CH3-CH=CH2 ، دومین عضو خانواده آلکنها می‌باشد که سه اتم کربن با 6 اتم هیدروژن به هم متصل شده‌اند.

بوتن

بوتن به فرمول C4H8 عضو بعدی این خانوده است که برای آن ، چند نوع آرایش می‌توان در نظر گرفت که در آنها ، چهار اتم کربن با هشت اتم هیدروژن طوری قرار بگیرند که قانون اکتت رعایت شده باشد. بوتن به ظاهر دارای سه ایزومر می‌باشد، ولی مطالعات تجربی نشان داده است که برای آلکنی به فرمول C4H8 چهار ساختمان فیزیکی کاملا متفاوت وجود دارد.

روش آیوپاک برای نامگذاری آلکنها

در روش آیوپاک ، نامگذاری آلکنها با رعایت نکات زیر انجام می‌شود:

  1. بلندترین زنجیری را که پیوند دوگانه کربن- کربن در آن قرار گرفته باشد، انتخاب می‌کنیم.
  2. زنجیر اصلی را به نحوی شماره گذاری می‌کنیم که اولین کربن روی پیوند دوگانه ، کوچکترین شماره را به خود بگیرد. (این روش تنها در مورد مشتقات کربن و هیدروژن صادق است. در نامگذاری الکل های اتیلنی و اسیدها و استرهای اتیلنی و برخی مشتقات دیگر ، اولویت با عوامل الکل ، اسید و استر می‌باشد.)
  3. شماره کربنهایی را که استخلافها در روی آنها قرار گرفته‌اند، مشخص می‌کنیم.
  4. اگر قرار باشد ایزومرهای هندسی ماده مشخص گردد، در اول نام ماده از پیشوند cis و trans یا E و Z استفاده می‌کنیم.

 


تصویر
2-cis بوتن

خواص فیزیکی آلکنها

بطور کلی ، خواص فیزیکی آلکنها مشابه آلکانهاست. آلکنها در حلالهای غیرقطبی مانند اتر ، کلروفرم و دی‌کلرو متان محلول ولی در آب نامحلول می‌باشند و سبکتر از آب نیز می‌باشند. نقطه جوش آلکنها با افزایش تعداد کربنها افزایش می‌یابد. بجز آلکنهای کوچک ، نقطه جوش آلکنها به ازای افزایش یک اتم کربن بین 20 تا 30 درجه سانتی‌گراد افزایش می‌یابد. همانند آلکانها ، شاخه‌دار شدن آلکنها موجب کاهش نقطه جوش می‌شود.

آلکنها اندکی قطبی‌تر از آلکانها هستند این قطبیت اندک در اثر خصلت الکترون دهی و الکترون گیری گروهها ایجاد می‌گردد. وقتی روی آلکنها ، گروههای القایی با قدرت بیشتر قرار می‌گیرد، ممان دو قطبی اندکی افزایش می‌یابد.

تهیه آلکنها

از طریق هیدروهالوژن زدایی از هالیدهای آلکیل

هیدروهالوژن زدایی ، واکنشی است که طی آن ، از یک مولکول هالید آلکیل یک مولکول هالید هیدروژن (یک اتم هیدروژن از یک کربن و یک اتم هالوژن از کربن مجاور) برداشته می‌شود. این واکنش بسته به ساختمان و شرایط محلول می‌تواند از طریق دو مکانیسم متفاوت E2 و E1 انجام بگیرد.

تهیه آلکنها از طریق هالوژن ردایی از α- دی بروموآلکان

اگر دو اتم هالوژن در روی یک اتم کربن قرار گرفته باشند، ماده را دی‌هالوژنه دوقلو geminal می‌نامند و اگر دو هالوژن در روی دو اتم کربن مجاور قرار گرفته باشند، vicinal خوانده می‌شود. از واکنش مشتقات α- دی برومو با پودر روی در اسید استیک و طی یک واکنش هالوژن زدایی ، آلکن مربوطه تولید می‌شود. در این واکنش ، هر دو اتم برم آزاد می‌شود و آلکن تشکیل می‌گردد. روی در اسید استیک نقش احیا کننده را بازی می‌کند. روی اکسید می‌شود و هالید الکیل احیا می‌شود.

تهیه آلکنها از طریق آبگیری از الکلها

یکی از بهترین روشهای تهیه آلکنها ، آبگیری از الکلهاست. واکنش آبگیری از الکل در حضور کاتالیزورهای اسیدی ، معمولا برگشت پذیر بوده ، سرعت کمتری دارد. لذا جهت جلوگیری از واکنش برگشتی و برای تکمیل واکنش ، آلکن تولید شده را از محیط واکنش خارج می‌کنند. با توجه به این که نقطه جوش آلکنها ، پایین‌تر از نقطه جوش الکلهای مربوطه می‌باشد، لذا این عمل بسهولت انجام می‌گیرد. در واکنشهای آبگیری از الکلها ، معمولا از اسید سولفوریک یا اسید فسفریک غلیظ استفاده می‌شود.

واکنشهای شیمیایی آلکنها

اگر بخواهیم واکنشهای شیمیایی آلکنها را پیش‌بینی نماییم، لازم است ابتدا فعالیت پیوند π در آلکنها را مورد مطالعه قرار دهیم و تاثیر پیوند دوگانه روی گروههای آلکیل مجاور و برعکس را خوب بدانیم. با مطالعه واکنشهای اختصاصی پیوند دوگانه ، قادر خواهیم بود تا واکنشهای اختصاصی خیلی از آلکنها و واکنشگرهای دیگر را پیش‌بینی نماییم.

بطور کلی دو نوع واکنش در روی آلکنها انجام پذیر می‌باشد. دسته اول آنهایی هستند که در روی پیوند π انجام می‌گیرند و لذا پیوند π از بین می‌رود و پیوندهای جدید تشکیل می‌گردد. واکنشهای دسته دوم ، واکنشهایی هستند که در محلولهای دیگری که ارتباط خاصی با پیوند دوگانه دارند، اتفاق می‌افتند. مثل گروههای آلکیل و یا عوامل دیگری که به کربنهای sp2 متصل می‌باشند

[+] نوشته شده توسط سیده سوسن میرصانع در 3:28 بعد از ظهر | | قالب بلاگفا
یکشنبه بیستم بهمن 1387

مقدمه

بعضی از ترکیبهای آلی ، فقط شامل دو عنصر هیدروژن و کربن می‌باشند و در نتیجه آنها را هیدروکربن می‌نامند. با تکیه بر ساختار ، هیدروکربنها را به دو گروه و طبقه اصلی یعنی آلیفاتیک و آروماتیک تقسیم می‌کنند. هیدروکربنهای آلیفاتیک خود به چند خانواده: آلکانها ، آکینها و همانندهای حلقوی آنها (سیکلوآلکانها و…) تقسیم می‌شوند.

متان ، ساده ترین عضو خانواده آلکانها

متان ، CH4 ، ساده ترین عضو خانواده آلکانها و همچنین یکی از ساده ترین ترکیبهای آلی است.


تصویر
آلکان

ساختار متان

هر یک از چهار اتم هیدروژن بوسیله پیوند کووالانسی ، یعنی با یک جفت الکترون اشتراکی به اتم کربن متصل شده است. وقتی کربن به چهار اتم دیگر متصل باشد، اوربیتالهای پیوندی آن (اوربیتالهای sp3 که از اختلاط یک اوربیتال s و سه اوربیتال p تشکیل شده‌اند) ، به سوی گوشه‌های چهار وجهی جهت گیری کرده‌اند.

این آرایش چهار وجهی ، آرایشی است که به اوربیتالها اجازه می‌دهد تا سر حد امکان از یکدیگر فاصله بگیرند. برای اینکه همپوشانی این اوربیتالها با اوربیتال کروی اتم هیدروژن به گونه ای موثر صورت پذیرد و در نتیجه ، پیوند محکم‌تری تشکیل شود، هر هسته هیدروژن باید در یک گوشه این چهار وجهی قرار بگیرد.

ساختار چهار وجهی متان بوسیله پراش الکترونی که آرایش اتمها را در این نوع مولکولهای ساده به روشنی نشان می‌دهد، تایید شده است. بعد شواهدی که شیمیدانها را خیلی پیش از پیدایش مکانیک کوانتومی REDIRECT (نام صفحه) یا پراش الکترونی d ، به پذیرش این ساختار چهار وجهی رهنمون شد، بررسی خواهیم کرد.

ما به طور معمول ، متان را با یک خط کوتاه برای نمایش هر جفت الکترون مشترک بین کربن و هیدروژن نشان خواهیم داد. برای آنکه توجه خود را بر روی الکترونها بطور انفرادی متمرکز کنیم، گاهی ممکن است یک جفت الکترون را بوسیله یک جفت نقطه نشان دهیم. سرانجام ، وقتی بخواهیم شکل واقعی مولکول را نمایش دهیم، از فرمولهای سه بعدی استفاده می‌کنیم.

خواص فیزیکی متان

واحد ساختار این ترکیب غیر یونی ، مولکول است، چه جامد باشد، چه مایع و چه گاز. به علت اینکه مولکول متان بسیار متقارن است، قطبیتهای انفرادی پیوندهای کربن – هیدروژن ، یکدیگر را خنثی می‌کنند، در نتیجه کل مولکول غیر قطبی است. نیروهای جاذبه موجود میان این مولکولها غیر قطبی، به نیروهای واندروالسی محدود می‌شوند؛

این نیروهای جاذبه ، در مورد این مولکولهای کوچک ، باید در مقایه با نیروهای قدرتمند موجود بین مثلا یونهای سدیم و کلرید ضعیف باشند. بنابراین ، از اینکه به آسانی می‌توان بوسیله انرژی گرمایی ، بر این نیروهای جاذبه فایق آمد، بطوری‌که ذوب شدن و جوشیدن در دمای پایین صورت بگیرد، تعجب نخواهیم کرد: دمای ذوب در 183- درجه سانتی‌گراد و دمای جوش در 161,5- درجه سانتی‌گراد قرار دارد. (این مقادیر را با مقادیر مربوط در مورد سدیم کلرید: یعنی دمای ذوب 801 درجه سانتی‌گراد و دمای جوش 1413درجه سانتی‌گراد مقایسه کنید.) در نتیجه ، متان در دماهای معمولی یک گاز است.

متان ، بی‌رنگ است و وقتی مایع شود، سبکتر از آب است (چگالی نسبی آن 0,4 است). موافق با قاعده تجربی که می‌گوید: «هم‌جنس در هم‌جنس حل می‌شود» ، متان فقط کمی در آب انحلال پذیر است، ولی در مایعات آلی مانند بنزین ، اتر و الکل بسیار حل می‌شود. از نظر خواص فیزیکی ، متان الگویی برای سایر اعضا خانواده آلکانهاست.

منبع متان

متان ، فرآورده پایانی تجزیه غیر هوازی (بدون هوا) گیاهان ، یعنی شکستن بعضی از مولکولهای بسیار پیچیده است. همچنین یکی از اجزاء اصلی (بیش از 97%) گاز طبیعی است. متان همان گاز قابل احتراق و منفجر شونده معادن زغال سنگ است و می‌توان خروج حبابهای آن را به عنوان گاز مرداب در سطح مردابها مشاهده کرد. اگر متان بسیار خالص لازم داشته باشیم، می‌توان آن را بوسیله تقطیر جزء به جزء از سایر اجزاء تشکیل دهنده گاز طبیعی (که بیشتر آلکانها هستند) جدا کرد.

البته بیشتر گاز طبیعی ، بدون خالص سازی ، به عنوان سوخت مصرف می‌شود.

ساختار اتان

از نظر اندازه C2H6 بعد از متان قرار می‌گیرد. اگر اتمهای این مولکول را با رعایت قاعده ای که می‌گوید برای هیدروژن یک پیوند (یک جفت الکترون) و برای کربن ، چهار پیوند (چهاز جفت الکترون) ، بوسیله پیوندهای کووالانسی به یکدیگر متصل کنیم، به ساختار زیر دست می‌یابیم: CH3-CH3.

هر کربن به سه هیدروژن و یک کربن دیگر متصل است و چون هر اتم به چهار اتم دیگر متصل است، اوربیتالهای پیوندی ان (اوربیتالهای sp3) بهسوی گوشه‌های چهار وجهی جهت گرفته‌اند. در اینجا نیز مانند مورد متان ، پیوندهای کربن- هیدروژن از همپوشانی این اوربیتالهای sp3 با اوربیتالهای s هیدروژنها بوجود آمده‌اند. پیوند کربن- کربن از همپوشانی دو اوربیتال sp3 نتیجه شده است.

توزیع الکترونها در پیوندهای کربن- هیدروژن و کربن- کربن بطور کلی یکسان است، یعنی در حول خط متصل‌کننده هسته‌ها به هم ، حالتی استوانه‌ای و متقارن دارد: این پیوندها را به علت شکل مشابهی که دارند، پیوند σ (پیوند سیگما) می‌نامند.
بنابراین ، زوایای پیوندی و طول پیوندهای کربن- هیدروژن باید خیلی شبیه به متان ، یعنی به ترتیب در حدود 109,5درجه و 1,1 آنگستروم باشند.

پراش الکترونی و بررسی‌های طیف‌بینی از هر نظر این ساختار را تایید کرده و برای مولکول اتان این اندازه‌ها را بدست داده‌اند. زوایای پیوندی 109,5 ، طول 1,1 برای C-H ، طول 1,53 برای C-C . بررسیهای مشابه نشان داده‌اند که این مقادیر ، با کمی انحراف ، از ویژگیهلی اختصاصی پیوندهای کربن- هیدروژن و کربن- کربن و زوایای پیوندی در آلکانها بشمار می‌روند.


تصویر
ساختمان پروپان

خواص فیزیکی آلکانها

خواص فیزیکی آلکانها از همان الگوی خواص فیزیکی متان پیروی می‌کند و با ساختار آلکانها سازگار است. یک مولکول آلکان فقط بوسیله پیوندهای کووالانسی برپا نگه داشته شده است. این پیوندها یا دو اتم از یک نوع را بهم متصل می‌کنند و در نتیجه ، غیر قطبی‌اند، یا دو اتم را که تفاوت الکترونگاتیوی آنها بسیار کم است، به یکدیگر ربط می‌دهند و در نتیجه قطبیت آنها کم است. به علاوه ، این پیوندها به طریقی بسیار متقارن جهت گرفته‌اند، بطوری که این قطبیهای پیوندی نیز یکدیگر را خنثی می‌کنند.

در نتیجه یک مولکول آلکان یا غیر قطبی است یا قطبیت بسیار ضعیفی دارد. نیروهایی که مولکولهای غیر قطبی را گرد هم نگه می‌دارند (نیروهای واندروالسی) ضعیف هستند و گستره بسیار محدودی دارند. این نیروها فقط بین بخشهایی از مولکولهای مختلف که با یکدیگر در تماس نزدیک باشند، یعنی بین سطوح مولکولها ، عمل می‌کنند. بنابراین در یک خانوده معین ، انتظار داریم که هر اندازه مولکول بزرگتر باشد و در نتیجه سطح تماس آنها بیشتر باشد، نیروهای بین مولکولی نیز قوی‌تر باشند.

دمای جوش و ذوب با افزایش شمار اتمهای کربن ، زیاد می‌شود. فرایند جوشیدن و ذوب شدن ، مستلزم فایق آمدن بر نیروهای بین مولکولی در یک مایع و یک جامد است. دمای جوش و دمای ذوب بالا می‌رود، زیرا این نیروهای بین مولکولی با بزرگ شدن مولکولها افزایش می‌یابند.

منبع صنعتی آلکانها

منبع صنعتی آلکانها ، نفت و گاز طبیعی همراه آن است. ترکیبهای آلی پیچیده که روزگاری سیستمهای زنده گیاهان و جانوران را تشکیل می‌دادند، در اثر فضارهای زمین شناختی ، طی میلیونها سال ، به مخلوطی از آلکانها که از نظر اندازه ، شامل یک کربن تا 30 تا 40 کربن هستند، تبدیل شده‌اند. سیکلوآلکانها نیز که در صنعت نفت به نفتنها شهرت دارند و به ویژه در نفت کالیفرنیا فراوان یافت می‌شوند، همراه با آلکانها بوجود آمده‌اند.

سوخت فسیلی دیگر ، یعنی زغال سنگ ، منبع بالقوه دیگر آلکانهاست. روشهایی برای تبدیل زغال سنگ از راه هیدروژن دار کردن به بنزین و سوخت کوره و همچنین تبدیل به گاز سنتز به منظور جبران کمبود گاز طبیعی ابداع شده است.

[+] نوشته شده توسط سیده سوسن میرصانع در 9:15 قبل از ظهر | | قالب بلاگفا
یکشنبه بیستم بهمن 1387

دید کلی

هیدرازین به فرمول N2H4 ، در صنعت کاربرد فراوانی دارد. اما همانند هر ماده شیمیایی دیگری ، کار با آن مستلزم رعایت اصول ایمنی و آزمایشگاهی است. با برخی از خطرات کار با هیدرازین و چگونگی مقابله با این خطرات آشنا می‌شویم.


تصویر
ساختمان هیدرازین

انفجار و آتش سوزی

مخلوط حاوی بیش از 4,7% حجمی هیدرازین بی‌آب و هوا می‌تواند در دماهای بالاتر از 38 درجه سانتی‌گراد ، بر اثر گرما ، شعله یا تابش فرابنفش منفجر شود. دمای اشتعال هیدرازین آبدار 75 درجه سانتی‌گراد است. در مورد محلولهای هیدرازین ، خطر انفجار کاهش می‌یابد و در محلولهای رقیقتر از 40 درصد خطر اشتعال از بین می‌رود. تماس هیدرازین با فلزات ، اکسیدهای فلزی و مواد اکسید کننده ، اسیدها ، مواد متخلخل نظیر خاک ، چوب ، کاغذ یا پارچه ممکن است به آتش سوزی یا انفجار منجر شود.

در صورت کار با پوشاک و تجهیزات آلوده ، محصولات سمی مانند اکسیدهای نیتروژن و آمونیاک بوجود می‌آید.

طریقه مقابله

برای جلوگیری از بروز خطرها ، هیدرازین بی‌آب را باید در محیط بسته مجهز به تجهیزات الکتریکی هشدار دهنده مورد استفاده قرار داد. هرگز نباید از هیدرازین در نزدیکی شعله ، جرقه و عوامل مشابه استفاده شود. در محل استفاده از هیدرازین ، هرگز نباید سیگار استعمال شود. باید از تابش مستقیم نور خورشید و تماس هیدرازین با فلزات و ترکیبهای شیمیایی مانند اکسیدها ، بشکه‌های حاوی هیدرازین را باید با پاشیدن آب خنک کرده ، از نشت هیدرازین بیشتر به محیط جلوگیری و همزمان به خاموش کردن آتش اقدام شود. ماموران اطفا حریق باید مجهز به ماسکهای تنفسی ، ماسک صورت و پوشش کامل ایمنی باشند.

برای خاموش کردن آتش‌سوزی‌های کوچک ناشی از هیدرازین از پاش آب ، مواد شیمایی خنک یا گاز CO2
استفاده می‌شود. در مورد آتش سوزیهای بزرگ باید از کف الکل یا آب با فشار زیاد استفاده شود.

حمل و نقل و ذخیره سازی هیدرازین

هیدرازین را باید در بشکه های محکم دربسته و در جو خنثی نگهداری کرد. محل نگهداری بشکه‌ها باید مجهز به سیستم تهویه ، فاضلاب مطمئن ، دور از تابش مستقیم نور خورشید و دیگر منابع انرژی باشد. باید از وجود فلزات ، اکسیدهای فلزی ، مواد متخلخل در این محل اجتناب و برای جلوگری از جرقه‌های الکتریکی ناشی از الکتریسیته ساکن ، مخازن نگهداری هیدرازین را به زمین منتقل کرد.

طبق مقررات بین‌المللی موجود ، هیدرازین آبدار و محلولهای آبی آن باید در مخازن فلزی با پوشش داخلی پلی اتیلنی ، قوطی‌های پلاستیک یا مخازن استیل ضد زنگ حمل شوند.

تصویر


دفع ضایعات هیدرازین

باید کلیه منابع احتمالی ایجاد احتراق را از محیط دور و مایع نشت شده را جمع آوری کرد. در صورتی‌که هیدرازین روی سطح زمین یا محل نگهداری ریخته شده باشد، آن را با آب تا غلظت کمتر از 40 درصد رقیق می‌کنند و روی ناحیه ناحیه مزبور را کف می‌پاشند تا هیدرازین تبخیر نشود. برای جمع آوری مقادیر کم هیدرازین از شن و ماسه استفاده می‌شود.

افراد مسئول نظافت باید مجهز به تجهیزات کامل ایمنی از جمله ماسک و لباسهای محافظ باشند و پس از رقیق کردن هیدرازین تا محلول کمتر از 40% می‌توان آنرا با محلول رقیق سولفوریک اسید خنثی و به همراه مقادیر زیادی آب به محیط زیست وارد کرد. بقایای هیدرازین را می‌توان پس از رقیق کردن با الکل در یک زباله سوز شیمیایی مجهز به سیستم جذب گازهای مضر دودکش بوسیله سوختهای هیدروکربنی سوزاند و از بین برد.

اثرات مضر هیدرازین بر روی انسان

با وجود استفاده های صنعتی گسترده از هیدرازین ، مطالعات مدون کمی درباره اثرات مضر آن در انسان انجام گرفته است. انسان ممکن است از راههای مختلفی از جمله شغلی ، مصرف داروهای حاوی هیدرازین ، مصرف سیگار یا به صورت تصادفی در معرض هیدرازین قرار گیرد. هیدرازین از طریق پوست ، ریه و دستگاه گوارش جذب و به سرعت در سراسر بدن پخش می‌شود. در مورد مسمومیتهای حاد انسان ، استفراغ ، آسیبهای متعدد دستگاه تنفسی ، سیستم اعصاب مرکزی کبد و کلیه‌ها گزارش شده است.

با این همه گزارشهای موجود از مسمومیتهای حاد خوراکی با هیدرازین روشن می‌کند که خوردن حدود 20 تا 50 میلی‌لیتر هیدرازین ممکن است مرگ آور باشد.
اغلب اثرات مشاهده شده در افرادی که در معرض هیدرازین قرار گرفته‌اند، در حیوانات آزمایشگاهی نیز دیده شده است. علاوه بر اثرات فوق ، کاهش وزن بدن ، کم‌خونی ، کاهش قند خون و چربی کبد نیز در برخی موارد مشاهده شده است.

سمیت هیدرازین نسبت به جنین و جوانه برخی حیوانات آزمایشگاهی و گیاهان به اثبات رسیده است، ولی اطلاعاتی در مورد سمیت هیدرازین بر جنین انسان وجود ندارد. سوزش پوست و چشم در انسان بر اثر تماس با هیدرازین مشاهده شده است، ولی اطلاعات کافی برای بیان بدون اثرات سوزش آور وجود ندارد. هیدرازین حساسیت زای قوی برای پوست انسان بوده ، با مشتقات خود تداخل می‌کند.

هیدرازرین در مطالعات خارج از محیط زنده بدن در برخی از گیاهان ، باکتریها ، قارچها و سلولهای پستانداران ، جهش ژنی و انحرافات کروموزومی ایجاد می‌کند. سرطانزایی هیدرازین در جانوران آزمایشگاهی به اثبات رسیده است، ولی در مورد انسان ، داده‌های کافی برای چنین ادعایی وجود ندارد. در غیاب چنین داده‌هایی و با در نظر گرفتن اطلاعات موجود در مورد جهش زایی و سرطانزایی هیدرازین در حیوانات ، هیدرازین از سوی موسسه بین المللی سرطان ، به عنوان یک ماده سرطانزا برای انسان معرفی شده است. بدین ترتیب باید قرار گرفتن انسان در معرض هیدرازین به حداقل ممکن کاهش داده شود.

تصویر


میزان در معرض هیدرازین قرار گرفتن انسان و سایر موجودات

هیدرازین بجز در موارد تصاوفی وحوادث ، خطر قابل توجهی برای مردم عادی ندارد. ولی در محیطهای صنعتی کارکنان را تهدید می‌کند. آستانه تشخیص بوی هیدرازین با حس بویایی انسان حدود 3 تا 5ppm است، در حالی‌که غلظت مجاز هیدرازین در محیط خیلی کمتر و در حدود چند دهم ppm است. به این دلیل ، در محیطهای صنعتی که از این ماده استفاده می‌شود، باید تا حد امکان از آن در سیستمهای بسته استفاده و همچنین تجهیزات دقیقی برای تشخیص غلظتهای پایین آن در هوا فراهم شود.

تجزیه هیدرازین در آب کند است و به شرایط فیزیکی و شیمیایی آن بستگی دارد. وجود هیدرازین برای گیاهان و میکروارگانیسمهای آبزی خطرناک است. باید به استفاده از روشهای صحیح انبارداری ، حمل و نقل و دفع ضایعات از آلودگی آب ، هوا و خاک جلوگیری شود.

یکی از نکات مهم دیگر ، آموزش کارکنان با چگونگی پیشگیری و نیز کمکهای اولیه در صورت بروز خطرهاست. همان طور که پیشتر نیز اشاره شد، متاسفانه در اغلب نیروگاههای کشور بدلیل عدم آگاهی کافی و در موارد زیادی بی‌توجهی ، محلول هیدرازین بدون رعایت کوچکتری موارد ایمنی جابه‌جا و مصرف می‌شود. بدین وسیله به نظر می‌رسد ارائه آگاهیها و اطلاعات لازم به کارگران و حتی برخی از دست اندرکاران نیروگاههای کشور ، زمینه خطرها و عوارض کوتاه مدت و دراز مدت ناشی از هیدرازین از سوی مسئولین ذی‌ربط ضروری است و لازم است کلیه افرادی که در معرض تماس با هیدرازین قرار دارند یا امکان قرار گرفتن آنها در معرض هیدرازین وجود دارد، دوره‌های آموزشی خاصی را در زمینه روشهای صحیح حمل و نقل ، استفاده ، از بین بردن ضایعات و همچنین روشهای صحیح مقابله با حوادث ناشی از هیدرازین طی کنند.

[+] نوشته شده توسط سیده سوسن میرصانع در 9:8 قبل از ظهر | | قالب بلاگفا
پنجشنبه هفدهم بهمن 1387

دید کلی

قوانین محیط زیست ، کیفیت هوای محیط باز را بهبود بخشیده است. اما به مشکلات فضای بسته توجه زیادی نشده است. تصور کنید قاتلی آزاد است، کسی که به قربانیان خود شلیک می‌کند و می‌گریزد. بدون شک بررسی‌های پلیس با مشاده صحنه جنایت و جستجوی دقیق نشانه و سرنخ همراه است. آنها از جسد عکس می‌گیرند، انگشت نگاری می‌کنند و از شهود بازجویی می‌کنند. گلوله ، آزمایش می‌شود. سپس فرد مسئول ، این اطلاعات را برای تشخیص دقیق آنکه چه کسی مجرم است، بکار می‌برد.

اما در نظر بگیرید که پلیس روش دیگری اتخاذ کند. چه خواهد شد اگر آنها تصمیم بگیرند با آزمودن تمام سلاحهایی که اخیرا آتش شده‌اند، شروع کنند؟ مطمئنا اسلحه مورد نظر یکی از همین سلاحهاست و آنها درست می‌گویند، حتی ممکن است موفق به شناسایی قاتل بشوند، اما پیش از آن باید برای آزمودن سریع همه سلاحهای گرمی که در درست مامورات قانون ، سربازان و شکارچیان کبک است، انرژی فراوانی صرف کنند. در دنیایی با منابع نامحدود ، احتمالا آنها پیش از آنکه به پیدا کردن مقصر نزدیک شوند، وقت و پول بسیاری را هدر می‌دهند.

در کمال تعجب ، اداراتی که مسئولیت حفاظت از عموم مردم را در برابر آلاینده های سمی به عهده دارند، از شیوه دوم تبعیت می‌کنند. غالب قوانین زیست محیطی تنها مقدار ضایعاتی را که بالقوه خطرناکند، در آب و هوا کنترل می‌کنند، نه میزان تماس واقعی مردم با این آلاینده را.

تمرکزبه نشر به جای تماس واقعی

تمرکز بیشتر به نشر به جای تماس ، اساسا این واقعیت را که مواد سمی تنها در صورتی که به بدن برسند، برای سلامتی مشکل ایجاد می‌کنند، نادیده می‌گیرد.

این غفلت تا حدودی قابل درک است. برای مدتهای مدید ، اطلاعات کمی درباره میزان تماس بیشتر شهروندان در معرض آلودگی‌هایی که تحت پوشش مقررات ملی است، وجود داشت. قانون گذاری به ندرت عده افرادی را که آلاینده ای خاص بر آنها اثر می‌گذارد و شدت تاثیر یا منابع خاص ماده شیمیایی مضر را با قطعیت می‌شناختند. در نتیجه مقامهای مسئول غالبا روی محدود ساختن منابع آشکار ، مثل خودروها و کارخانه‌ها ، متمرکز شدند و در شناسایی و تعیین بسیاری از منابع مهم که کمتر آشکارند، با شکست مواجه شدند.

خوشبختانه ، دانش ارزیابی میزان تماس افراد با مواد سمی پیشرفت کرده است. دانشمندان بویژه ، دستگاههای تجزیه‌ای بسیار حساس و ابزارهای نمایشگر قابل حمل را ابداع کرده‌اند. پژوهشگران این تجهیزات را در مقیاس بزرگ بکار برده‌اند تا نشان دهند که افراد در کجا و چگونه در معرض مواد شیمیایی بالقوه خطرناک واقع می‌شوند.


تصویر


تماس شخصی

در سال 1980، اولین تلاش جدی برای برآورد تماس روزمره عموم مردم در معرض مواد سمی آغاز شد. این برنامه ، ابتدا به وسیله پژوهشگاه تری انگل در کارولینای شمالی و سایر سازمانهای پژوهشی پیمانکار انجام گرفت و سپس توسعه یافت و تا حدود بیست و چهار برنامه مطالعاتی را در 14 ایالت امریکا در برگرفت. پژوهشگران تحت حمایت بخش خصوصی با استفاده از همان روشها در ایالت پانزدهم (آلاسکا) و در یک استان کانادا ، مطالعات مشابهی انجام دادند.

در اغلب این بررسی‌ها ، دستگاههای نمایشگر بکار می‌رفت. این دستگاهها آن‌قدر سبک و کوچک بود که افراد می‌توانستند ضمن انجام فعالیتهای معمول خود ، آن را حمل کنند. این ابزارها نشان داد که چه آلودگی‌هایی و به چه مقدار در نزدیکی افراد وجود دارد. در پاره ای موارد ، پژوهشگران ، اندازه‌گیریهایی روی غذا و آب مصرفی نیز انجام دادند. آنها ، در مواردی ، مقدار آلاینده های مختلف خون را روی نمونه‌های تنفسی تعیین کردند.

این مطالعات ، فراوانی ترکیبات آلی فرار ، منوکسید کربن ، آفت‌کشها یا ذرات خطرناک را در زندگی روزمره بیش از 3000 نفر آزمود. این افراد در واقع به‌عنوان نماینده جمعیتی بودند که در نواحی شهری و حومه آمریکای شمالی زندگی می‌کردند. نمونه‌ها با جزئیات کافی تجزیه شیمیایی شدند تا مواد شیمیایی که افراد هر روزه در معرض آن هستند، مشخص شود.

بیشتر در این بررسی‌ها ، ترکیبات فرار بویژه برای بررسی حدود 30 ماده شیمیایی مختلف که بسیاری از آنها عوامل شناخته شده سرطان در انسان و جانوران‌اند، آزمایش شد.

نتایج تحقیقات

اینکه تماسهایی که اغلب مردم با این مواد دارند، خطر بزرگی برای سلامتی آنها دارد یا خیر روشن نیست، زیرا تخمین حداقل مقدار لازم هر ترکیب برای آنکه باعث بیماری شود بسیار سخت است. هنوز هم نتایج مطالعات گیج کننده است: تماس اغلب شهروندان با آلاینده هایی که بالقوه سمی‌اند، در محیطهای بسته اساسا پاکیزه تصور می‌شوند، مثل منازل ، ادارات و خودروها و نه محیطهای باز ، خیلی محتمل است.

قرار گرفتن در معرض آلودگی در محیطهایی که معمولا مورد توجه قوانین زیست محیطی‌اند مثلا کارخانجات یا صنایع محلی در مقایسه قابل صرف نظر کردن است. حتی در شهرهای بایون و الیزابت در نیوجرسی که در آنها واحدهای فراورش شیمیایی زیادی وجود دارد، ثابت شده است که مقدار ترکیب آلی فرار در فضای بسته از فضای باز بیشتر است. مشخص شده است که منابع اصلی معمولا محصولات مصرفی‌ ، از خوشبوکننده‌های هوا ، پاک‌کننده‌ها و انواع مصالح ساختمانی‌اند.

معضل آلودگی به بنزن در محیطهای بسته

آیا اقلامی که هرروزه بشر با خوشحالی وارد منازل خود می کند، بیش از آلودگی‌های صنعتی برای سلامتی او مضرند، حتی در مورد اجتماعاتی که در محاصره واحدهای صنعتی هستند؟ پاسخ خیلی کوتاه ، بلی است. مثلا بنزن که غلظت زیاد آن در بدن ایجاد لوسمی (سرطان خون) می‌کند، در بنزین و بعضی محصولات خانگی وجود دارد. همچنین ، این ماده یکی از حدود 4000 ماده شیمایی است که در دود دخانیات یافت می‌شود، بنابراین زندگی با یک نفر سیگاری ، فرد را به مقدار زیاد در معرض بنزن قرار می‌دهد.

در سال 1985، پژوهشگران همه شواهد موجود را درباره آنکه چگونه چند صد نفر که در 5 ایالت مختلف بودند در معرض این ترکیب قرار گرفتند، جمع بندی کردند. ایشان دریافتند میانگین غلظت بنزنی که این افراد تنفس کرده بودند، نزدیک به سه برابر میزان آن در فضای باز بود. طبق محاسبات نزدیک به 45 درصد از کل تماس جمعیت آمریکا با بنزن ، از سیگار (یا تنفس دود سیگار دیگران) ، 36 درصد از تنفس بنزین یا مصرف انواع محصولات متداول (مثل چسب) و 16 درصد از سایر منابع خانگی (نظیر رنگها یا بنزین ذخیره شده در زیرزمینها یا توقفگاهها) ناشی می‌شود و تنها 3 درصد از میانگین میزان تماس افراد به آلودگی صنعتی نسبت داده می‌شود.

قانونگذاران به بیراهه می روند.

در مقابل ، قانونگذاری معمولا تنها به مقدار کل بنزنی که در محیط عمومی رها می‌شود، توجه می‌کنند که بیشترین سهم را در آن ، خودروها (82 درصد) ، صنعت (14 درصد) و منابع خانگی (3 درصد) دارند. سیگار تنها 1/0 درصد کل را شامل می‌شود. پژوهشگران نشان دادند که با قطع کامل نشر بنزن از واحدهای صنعتی این مشکل ابدا حل نمی‌شود. در حالی‌که کاهش متوسط دود سیگار ( کوچکترین منبع بنزن در جو ) به میزان قابل ملاحظه‌ای احتمال بیماری‌های ناشی از بنزن را کم می‌کند.

تصویر


سایر منابع عمده آلوده کننده

بسیاری دیگر از ترکیبات آلی فرار که در غلظتهای زیاد خیلی سمی‌اند، در محیطهای بسته فراوانتر از محیطهای بازند. مثلا تتراکلرو اتیلن (موسوم به پرکلرو اتیلن یا پرک) که مشخص شده عامل سرطان حیوانات آزمایشگاهی است، در خشک شویی‌ها مصرف می‌شود. بنابراین وقتی مردم در ساختمانی که امکانات دارد، زندگی می‌کنند، لباسهایی را که اخیرا خشک‌شویی شده است، می‌پوشند یا لباسهای حاوی این ماده شیمیایی را در کمد خویش نگه می‌دارند، بیشترین حد تماس اتفاق می‌افتد.

مواد ضد بید ، ضدعفونی کننده‌های توالتها و بوگیرها منابع اصلی تماس با پارادی‌کلرو بنزن‌اند که در جانوران باعث سرطان میشود. مطالعات متافقا" نشان داده است که تقریبا همه تماس با پارادی‌کلرو بنزن از منبع داخل منزل ناشی می‌شود نه از نشر صنعتی یا زباله‌های مضر.

راههای پیشگیری از تماس

با آنکه تخمین خطرهای سلامتی با قطعیت همراه نیست، روشن است که تماس کمتر با ترکیبات فرار سمی بهتر است، اغلب مردم می‌توانند با اجتناب از محصولاتی که حاوی چنین آلودگیهایی‌اند، تماس با مواد بالقوه مضر را محدود کنند. اما اجتناب از سایر بخارهای مضر مشکل است. مثلا ، منابع اصلی تماس با کلروفرم (که گازی است نگران کننده ، زیرا در حیواناتی که در معرض غلظت زیاد آن قرار می‌گیرند سرطان ایجاد می‌کند) دوش آب ، آب جوش و مواد شوینده لباسهاست.

این ماده از کلری که برای تصفیه منابع آبی مصرف می‌شود، تشکیل می‌گردد. از آنجا که مردم ملزم به استفاده از آب لوله‌کشی هستند، تنها راه به حداقل رساندن تماس با کلروفرم ، نوشیدن آب بطری (یا آب شیر که از یک صافی زغالی مرغوب رد شده باشد) و بهبود تهویه در حمام و لباسشویی‌هاست.

پیشگیری از تماس با منوکسید کربن

جریان هوای خوب نیز می‌تواند به کاهش تماس با منوکسید کربن کمک کند. منوکسید کربن ، محصول احتراقی ناقص است، اکسیژن خون را کاهش می‌دهد و تنفس مقادیری از آن که معمولا در محیطهای بسته وجود دارد، بویژه برای افرادی که ناراحتی قلبی دارند، مضر است. با آنکه مطالعات انجام گرفته در اوایل دهه 1980 نشان می‌داد که مقدار کربن منوکسید در افراد درون وسایط نقلیه موتوری یا نزدیک به آنها به شدت افزایش می‌یابد، سایر تحقیقات نشان داد که لوازم خانگی ، مثل بخاری‌های گازی با عملکرد ضعیف ، کباب‌پزها و کوره‌ها نیز می‌توانند باعث شرایط بسیار ناسالم- حتی مرگ - شوند.

خوشبختانه ، در آمریکا ، هماهنگ با کاهش مقدار نشر کربن منوکسید از خودروها که طبق قوانین فدرال انجام گرفت، مقدار آن در محیطهای باز نیز رو به کاهش گذاشت. پیشرفت بیش از این مشکل خواهد بود. زیرا در مجموع مردم آمریکا هم‌اکنون در محیطهای بسته بیش از محیطهای باز در معرض کربن منوکسید قرار دارند.

خطر ذرات معلق

نگرانی زیست محیطی دیگری که در محیطهای بسته بیشتر است، خطر ذرات معلق در هواست. در یک بررسی ، پژوهشگران نمایشگرهای کوچکی را برای جمع آوری ذرات داخل و اطراف 178 منزل واقع در کنار رودخانه کالیف بکار بردند. نتایج نشان داد که ذرات با قطر 10 میکرون یا کمتر وجود دارند که برای نفوذ در ریه به قدر کافی کوچکند.
در عین ناباوری ، تماس روزانه ، از آنچه که با توجه به اندازه گیری همزمان مقدار ذرات معلق در نمونه‌های هوا در محیطهای بسته و باز انتظار می‌رفت، حدود 60 درصد بیشتر بود.

حداقل بخشی از این افزایش تماس به آن دلیل است که افراد در هوا شناورند نیستند، بلکه ابر غبار حامل ذرات محیط اطراف خود را ضمن حرکت جابه جا می‌کنند. این پژوهشگران نشان دادند که اکثر این ذرات ریز بر اثر احتراق (مثل سیگار ، پخت و پز ، سوختن شمع یا آتش چوب) تشکیل می‌شوند. پیدا شدن چنین آلاینده‌هایی در محیطهای بسته مشکل آفرین است، زیرا مطالعات همه گیری شناسی اخیرا ارتباط افزایش غلظت ذرات ریز در محیطهای باز را با مرگ زودرس نشان داده است.

غلظت آفت کشها در محیطهای بسته

نتایج مطالعات آلاینده های محیطهای بسته که در اواخر دهه 1980 که در جکسون ویل و اسپرنیگ فیلد

مواد شیمیایی که در پی ساختمان این منازل علیه موریانه‌ها بکار رفته بود، به درون منازل راه یافته بود. این مواد سمی ممکن است از طریق کفش افراد یا از طریق خاک به شکل گاز وارد خانه‌ها شده باشد. کلردان (در سال 1988 از فهرست محصولات مصرفی در منازل حذف شد) و سایر آفت کشها که هوای بسته را آلوده می‌کنند، بیش از آنچه که در مواد غذایی یافت می‌شوند، باعث تماس می‌شوند.

بعلاوه ، گاهی مردم ، آفت کشهای نامناسب را مستقیما روی سطوح محیطهای بسته بکار می‌برند، بدون آنکه بدانند خودشان را تا حد زیادی در معرض آنها قرار می‌دهند. حتی خانه‌دارهای روشنفکر نیز غالبا بکار بردن مواد شیمیایی را خطرناک نمی‌دانند. آفت کشها که در محیط باز طی چند روز تخریب می‌شوند، ممکن است در قالبها که آنها را از تخریب به وسیله نور خورشید و باکتریها محافظت می‌کنند، سالها باقی بمانند. این پایداری را می‌توان با اندازه گیری آفت کش د.د.ت (دی کلرودی فنیل تری کلرواتان) که در سال 1972 بدلیل سمی بودن ، مصرف آن در آمریکا ممنوع شد، نشان داد.

در بیش از نصف خانه هایی که بررسی شد، غلظت هفت ترکیب آلی سمی موسوم به هیدروکربنهای آروماتیک چند حلقه‌ای (ترکیباتی که از احتراق ناقص حاصل شده و باعث سرطان در جانوران شده و تصور می‌شود که در انسان نیز سرطان بوجود می‌آورد)، بیش از مقدار مجاز در خاک نواحی پرجمعیت مسکونی بوده است. انجام گرفت، نگرانی بیشتری را موجب شد. بررسی کنندگان دریافته‌اند که در این دو محل ، غلظت آفت کشها در هوای محیطهای بسته دست کم 5 برابر (نوعا 10 برابر یا بیشتر) از هوای باز بیشتر است و این حشره کشهایی را شامل می‌شود که مصرف آنها تنها در محیطهای باز مورد تایید است.

انسان کوچک ، مشکلات بزرگ

آفت کشها و ترکیبات آلی فرار که در محیطهای بسته وجود دارند، هر ساله باعث 300 مورد سرطان در آمریکا می‌شوند، این مواد برای افراد غیر سیگاری به اندازه رادون (گاز پرتوزا طبیعی که از طریق پی وارد بسیاری از منازل می‌شود) یا دود غیر مستفیم سیگار تهدید کننده‌اند. غبار سمی منازل بخصوص برای بچه‌های کوچک که کف خانه بازی می‌کنند، روی قالی‌ها می‌خزند و مرتبا دستها را در دهان قرار می‌دهند، خطرناک است.

کودکان بسیار مستعدند، اندامهای در حال رشد آنها بیشتر آماده آسیب دیدگی است، آنها کسر کوچکی از وزن بدن بزرگسالان را دارند و ممکن است 5 برابر بیشتر از آنها غبار ببلعند، بطور متوسط 100 میلی گرم در روز.

تصویر


تخمین تقریبی میزان آلودگی

قبل از سال 1990، زمانی که سازمان حفاظت از محیط زیست و وزارت مسکن و شهرسازی آمریکا روشهای استاندارد را برای نمونه‌برداری غبار قالیها ، مبلمان و سایر سطوح تبیین کردند، برآورد کمی خطر موجود برای بچه ها مشکل بود. با این حال از آنوقت روشهای بهبود یافته به دانشمندان این امکان را دادند تا بیانی واقعی از میزان تماس ارائه کنند. مثلا ما هم اکنون قادریم تخمین بزنیم که هر کودک شهری بطور متوسط روزانه 110 نانوگرم بنزوپیرن ، سمی‌ترین هیدروکربن آروماتیک چند حلقه‌ای را می‌بلعد.

اگر چه به سختی می‌توان با قطعیت گفت گه این مقدار چه اندازه احتمال ابتلای طفل به سرطان را در بعضی از نقاط بدن افزایش می‌دهد، ولی این مقدار هشدار دهنده بوده و با آنچه کودک می‌تواند از کشیدن سه نخ سیار بدست آورد، معادل است.

همچنین تحقیقات نشان داد که غبار خانگی برای بچه‌ها منبع اصلی تماس با کادمیم ، سرب و سایر فلزات سنگین و همچنین پلی‌کلرو بی‌فنیلها و سایر آلاینده های آلی پایدار است. قالی‌ها بیش از همه مشکل آفرینند، زیرا حتی اگر مرتب به روش متداول با جاروبرقی تمیز شوند، باز هم در عمقشان ترکیبات سمی (و همچنین باکتریهای خطرناک و حساسیت آورهای مولد آسم) عمل می‌کنند. قالبهای با پرز و موی بلند مشکلاتی بیش از قالبهای صاف دارند، کیفهایی که با چوب ، کاشی با مکالئوم پوشیده می‌شوند، بسیار آسان تمیز می‌شوند و مناسبند.

مقابله

بیرون آوردن کفش از پا ، پیش از ورود ، حتی بیش از پاک کردن کفش در کاهش مقدار آلاینده های سمی محیط داخل که محیط بیشتر منازل را آلوده می‌کند (مثل سرب رنگهای کنده شده و آفت کشهای خاک اطراف پی ساختمان) موثر است. افراد می‌توانند با اعمال این نکات برای جلوگیری از ورود غبار و بکار بردن جاروبرقی‌های موثر (انواعی که به برسهای گردان مجهزند و ترجیحا مجهز به حسگرهای غبار) ، مقدار سرب و بسیاری از مواد سمی دیگر را در قالی‌هایشان تا یکدهم (یا ، در بعضی موارد ، یک صدم) کاهش دهند.

ناآگاهی

بدبختانه بیشتر مردم از حضور همیشگی آلودگی‌ها در فضای بسته و روشهای کاهش آن بی‌اطلاع اند. روش ابتکاری انجمن ریه آمریکا در پیدا کردن راه چاره آن است که داوطلبان آموزش دیده را به منازل بفرستد تا از منازل بازدید و به ساکنان آن در محدود ساختن خطرهای زیست محیطی خانگی ، کمک کنند.

مشکل با قانون

هم‌اکنون یافته‌های فراوانی از مطالعات چند جانبه درباره ‌تماس روزانه مردم در اختیار است و همگی به یک نتیجه گیری اشاره می‌کنند که همان آلاینده های تحت پوشش قوانین زیست محیطی در فضای باز ، معمولا به میزان بیشتر در عموم اماکن مسکونی وجود دارند. این موقعیت ، دست کم تا حدودی نتیجه تلاش سه دهه اخیر در کنترل نشر از خودروها و صنایع در بهبود کیفیت هوای محیط باز بوده است.

از بین صدها آلاینده هوا که تحت کنترل قوانین جاری قرار دارند، تنها اوزون و گوگرد دی‌کسید در محیط باز بیشترند. بنابراین عجیب است که هنوز توجه بیشتری به آلودگی‌های محیط بسته که تشخیص منابع اصلی آن مشکل نیست، معطوف نشده است. در واقع ، آنها درست زیر دماغ مردمند: ضدبیدها ، آفت کشها ، حلالها ، بوبرها ، پاک کننده ها ، لباسهای خشک شویی شده ، قالبهای غبار آلوده رنگ ، نئوپان ، چسبها و دود ناشی از پخت و پز و گرمایش تنها بعضی از این مواردند.

[+] نوشته شده توسط سیده سوسن میرصانع در 2:14 بعد از ظهر | | قالب بلاگفا
پنجشنبه هفدهم بهمن 1387

آبکاری با نیکل

نیکل یکی از مهمترین فلزاتی است که در آبکاری به کار گرفته می‌شود. تاریخچه آبکاری نیکل به بیش از صدها سال پیش باز می‌گردد این کار در سال 1843 هنگامی که R.Rotlger توانست رسوبات نیکل را از حمامی شامل سولفات نیکل و آمونیوم بدست آورد آغاز گردید بعد از آن Adams اولین کسی بود که توانست آبکاری نیکل را در موارد تجاری انجام دهد. نیکل رنگی سفید شبیه نقره دارد که کمی متمایل به زرد است و به راحتی صیقل‌پذیر و دارای خاصیت انبساط و انقباض٬ جوش‌پذیر بوده و مغناطیسی می‌بلاشد. آبکاری با نیکل اساسا به منظور ایجاد یک لایه براق برای یک لایه بعدی مانند کروم و به منظور فراهم آوردن جلای سطحی خوب و مقاومت در برابر خوردگی برای قطعات فولادی٬ برنجی و حتی بر روی پلاستیکهایی که با روش‌های شیمیایی متالیزه شده‌‌‌اند به کار می‌رود. مواد شیمیایی که در الکترولیتهای نیکل به کار می‌روند عبارتنداز:

  • نمک فلزی (مهمترین آنها سولفات نیکل است و همچنین از کلرید نیکل و سولفومات نیکل نیز استفاده می‌شود.)
  • نمک رسانا (برای بالا بودن قابلیت رسانایی ترجیحا از کلریدها مخصوصا کلرید نیکل استفاده می‌شود.)
  • مواد تامپونه کننده (برای ثابت نگه داشتن PH اصولا اسید بوریک به کار برده می‌شود.)
  • مواد ضد حفره‌ای شدن (برای جلوگیری از حفره ای شدن به الکترولیتهای نیکل موادی اضافه می کنند که مواد ترکننده نامیده می شوند. سابقا از مواد اکسید کننده به عنوان مواد ضد حفره استفاده می‌شد.)

آبکاری با کروم

روکش‌های لایه کروم رنگی شبیه نقره٬ سفید مایل به آبی دارند. قدرت انعکاس سطح کروم‌کاری شده و کاملا″ صیقلی شده در حد 65% است (برای نقره 88%و نیکل 55%) در حالی که خاصیت انعکاس نقره و نیکل با گذشت زمان ضایع می‌شود٬ در مورد کروم تغییری حاصل نمی‌شود. لایه‌های کروم قابل جوشکاری نبوده و رنگ‌کاری و نقاشی را نمی‌پذیرند. کروم در مقابل گازها٬ موادقلیایی و نمکها مقاوم است اما اسید سولفوریک واسید کلریدریک وسایر اسیدهای هالوژن‌دار در تمام غلظتها ودر تمام درجه حرارتها بر روی کروم تاثیر می گذارند. به دنبال رویین شدن شیمیایی٬ روکش‌های کروم مقاومت خوبی در اتمسفر از خود نشان می‌دهند و کدر نمی‌شوند. از این رو به تمیز کردن و یا نو نمودن توسط محلولها یا محصولات حل کننده اکسیدها را ندارند. روکش‌های کروم تا 500 درجه سانتیگراد هیچ تغییری از نظر کدر شدن متحمل نمی‌‌شوند. رویین شدن حالتی است که در طی آن در سطح کروم٬ اکسید کروم (3+) تشکیل می شود. این عمل موجب جابه‌جایی پتانسیل کروم از 0.717 به 1.36 ولت می شود و کروم مثل یک فلز نجیب عمل می نماید. لایه های پوششی کروم براق با ضخامت پایین (در حدود 1 میکرومتر)که غالبا در کروم‌کاری تزیینی با آن روبه رو هستیم فولاد را در مقابل خوردگی حفاظت نمی‌کنند کروم کاری ضخیم که در مقابل خوردگی ضمانت کافی داشته باشد فقط از طریق کروم‌کاری سخت امکانپذیر است. با توجه به اینکه پوشش‌های کروم الکترولیتی سطح مورد آبکاری را به طور کامل نمی‌پوشانند از این رو کروم‌کاری تزیینی هرگز به تنهایی مورد استفاده قرار نمی‌گیرد بلکه همواره آن را به عنوان پوشش نهایی بر روی واکنش‌هایی که حفاظت سطح را در مقابل خوردگی ضمانت می‌نمایند به کار می‌روند. معمولا به عنوان پایه محافظ از نیکل استفاده می‌شود.

آبکاری با مس

مس فلزی است با قابلیت کشش بدون پاره شدن٬ نرم و هادی بسیار خوب جریان برق و گرما. مس از هیدروژن نجیب‌تر است و در نتیجه نه تنها در مقابل آب و محلولهای نمک‌دار بلکه در مقابل اسیدهایی که اکسیدکننده نیستند نیز مقاومت دارد. اکسیدکننده‌ها و اکسیژن هوا به راحتی مس را به اکسید مس (I) و یا اکسید مس (II) تبدیل می‌کنند اکسیدهایی که برخلاف خود فلز در اکثر اسیدها حل می‌شوند. به دلیل وجود گازهای مخرب در محیط که دارای گوگرد هستند٬ روی اشیایی که از جنس مس هستند لایه هایی از سولفور مس به رنگ‌های تاریک و یا سبز تشکیل می‌شود.

الکترولیت‌های آبکاری مس

  • الکتر‌ولیت‌هایی برپایه اسید سولفوریک یا اسید فلوریدریک
  • الکتر‌ولیت‌هایی که فسفات در بر دارند
  • الکتر‌ولیت‌ها ی سیانیدی

الکترولیت‌های اسیدی بر پایه سولفات مس به غیر از مس‌اندود نمودن مستقیم سرب، مس و نیکل برای دیگر فلزات مناسب نیستند. اینها روی آهن٬ آلومینیم و روی به طور مستقیم تولید روکش نمی‌کنند اگر در یک الکترولیت اسید اشیایی از جنس آهن٬ آلومینیم و روی فرو ببریم یک لایه اسفنجی در نتیجه مبادله یونی ایجاد می‌شود. این یک لایه پایداری بدون چسبندگی برای لایه‌های دیگر خواهد بود. بنابراین قبل از مس‌اندود نمودن این فلزات در محیط اسیدی باید حتما یک عملیات مس‌اندود نمودن در محیط اسیدی انجام گرفته باشد. الکترولیت‌های سیانیدی٬ علی‌رغم سمی بودنشان به علت دارا بودن خواص خوب اهمیت زیادی پیدا کرده‌اند. پوششهای حاصل از حمام‌های سیانیدی دارای توان پوششی خوبی می‌باشند٬ آنها دارای دانه‌بندی حاصل از چسبندگی فوق‌العاده‌ای‌اند. در نتیجه پدیده‌های شدید پلاریزاسیون٬ قدرت نفوذ الکترولیت‌های سیانیدی بهتر از حمام های مس‌کاری اسید است. الکترولیت‌های پیروفسفات مس برای ایجاد روکش‌های زینتی روی زاماک٬ فولاد٬ آلیاژهای آلومینیم و برای پوشش سطحی فولاد بعد از عملیات سمانتاسیون به کار برده می‌شود. موارد کابردی دیگر می‌توان مس‌کاری سیم‌ها و شکل‌یابی با برق را نام برد.

آلیاژهای مس

  • برنج: آْلیاژی از مس و روی که CuZn30 نامیده می‌شود.
  • برنز: آلیاژی از مس و قلع می‌باشد.

آبکاری با روی

روی فلزی است به رنگ سفید متمایل به آبی٬ بالاتراز 100 درجه سانتیگراد شکننده٬ مابین100 الی 200 درجه سانتیگراد نرم٬ قابل انحنا و انبساط است و می‌توان به صورت ورقه‌های نازک درآورد٬ بالای 200 درجه سانتیگراد دوباره شکننده می‌شود. خاصیت تکنیکی خیلی مهم روی حفاظت خیلی خوب پوشش‌های آن در مقابل خوردگی است. این خاصیت ترجیحا بواسطه تشکیل لایه یکنواخت و چسبنده اتمسفر ایجاد می‌شود و عموما شامل اکسید و هیدروکسید کربنات روی و گاهی نیز سولفات و کلرید روی می‌باشد.

الکترولیت‌های آبکاری روی

  • الکترولیت‌های اسیدی : اسید سولفوریک - اسید کلیدریک و اسید فلوبوریک.
  • الکترولیت‌های بازی : سیانیدی - زنکاتی و پیروفسفات.

قدیمی‌ترین نوع روی‌کاری گالوانیزاسیون است . در این روش روی کاری٬ قطعات آهنی بعد از عملیات پرداخت در داخل روی مذاب در درجه حرارتی مابین 420 الی 450 درجه سانتیگراد فرو برده می‌شود. برای اهداف تزئینی از روی‌کاری براق استفاده می‌شود. اساسا″ ترکیب حمام‌های براق شبیه حمام‌های مات است٬ فقط حمام های براق دارای درجه خلوص بالاتر و بعلاوه مواد براق‌کننده آلی و غیرآلی می‌باشند.
معمولا لایه‌های پوششی روی عملیات پسین شیمیایی توسط کروماته کردن و یا فسفاته کردن را پذیرا هستند. در نتیجه کروماته کردن لایه های روی خوردگی روی به طور قابل ملاحظه‌ای کاهش می‌یابد.

آبکاری با کادمیوم

رنگ آن سفید بوده و به نقره شباهت دارد. بسیاری از خواص کادمیوم به روی شبیه اند. لایه کادمیوم به سهولت قابل لحیم‌کاری است. حفاظت ضدخوردگی کادمیوم شدیدا″ تحت تاثیر محیط خورنده می‌باشد. با توجه به اینکه فلز کادمیوم مسموم کننده است٬ بدین جهت از این لایه ها نباید برای قطعاتی که همیشه دم دست هستند و همچنین در صنایع غذایی استفاده نمود.

الکترولیت‌های آبکاری کادمیوم

حمام های کادمیوم کاری بسیار متداول از انحلال اکسید کادمیوم و یا سیانید کادمیوم در سیانید سدیم تولید می‌شوند.
به وجود آمدن شکنندگی توسط هیدروژن در کادمیوم کاری سیانیدی سبب شده است که الکترولیت‌های اسیدی برای کاربردهای ویژه‌ای تهیه شوند. تنها فرایندی که امروزه سودمند است٬ بر پایه حمام‌های فلوئوبرات مبتنی است.
عملیات پسین پوشش‌های کادمیوم نیز به منظور بهتر نمودن منظر قطعه انجام می‌یابد. غوطه‌ور نمودن کوتاه مدت در اسید نیتریک 0.5-0.3 درصد سبب براق شدن لایه‌ها از نوع نقره خواهد شد. در صورتی که بخواهیم لایه کادمیوم در مقابل خوردگی مقاوم‌تر شود٬ به طریق پسین با استفاده از محلول‌های اسید حاوی یونهای کروم (VI) ممکن خواهد بود. بر طبق غلظت و ترکیب محلول‌های کروم‌دار٬ لایه‌های کرومات به رنگهای آبی آسمانی٬ زرد براق یا سبز زیتونی ایجاد می‌شود که به طور قابل ملاحظه‌ای در مقابل خوردگی لایه را بهتر می‌نمایند.

آبکاری با قلع

قلع فلزی است براق٬ دارای رنگ سفید نقره‌ای٬ در درجه حرارت معمولی در مقابل آب و هوا مقاوم است و اسیدها و بازهای ضعیف به سختی روی آن اثر می‌گذارند. برعکس اسید و بازهای قوی به آسانی روی آن اثر می‌گذارند. به راحتی لحیم‌پذیر است. قلع در مقابل مواد غذایی و اتمسفر معمولی تحت تاثیر قرار نمی‌گیرد. با توجه به اینکه سمی نیست٬ کاربرد زیادی در پوشش‌کاری قطعات صنعتی مواد غذایی و صنعت کنسروسازی دارد. با توجه به لحیم‌کاری بسیار عالی در صنعت برق نیز به کار برده می‌شود.

الکترولیت‌های آبکاری قلع

  • الکترولیت‌های اسیدی : اسید فنل سولفونیک - اسید هیدروفلوریک و اسید فلوئوروبونیک.
  • الکترولیت‌های قلیایی : براساس استانات سدیم یا پتاسیم و هیدروکسیدهای مربرطه می‌باشد.

پوشش‌های قلع ایجاد شده روی قطعات به طریق الکترولیتی ظاهری کدر دارند با فرو بردن قطعات در حمام روغن داغ (Surfuion) براق می‌شوند. حمام‌های روغن داغ٬ خلل و فرج موجود در پوشش را از بین برده٬ مقاومت در مقابل خوردگی قشر را افزایش می‌دهند. همچنین با استفاده از یک محلول خیلی داغ کرومات قلیایی حاوی یک تر کننده٬ می‌توان مقاومت در مقابل خوردگی قشر قلع‌اندود شده را بهتر نمود.

آبکاری با نقره

نقره فلزی قیمتی (نجیب)٬ به رنگ سفید براق است. اسید کلریدریک٬ اسید سولفوریک و اسید استیک به طور جزیی بر آن اثر می‌کند٬ برعکس اسید نیتریک٬ آن را به صورت نیترات نقره حل می‌کند. نقره توسط سولفور هیدروژن و ترکیبات دیگر گوگرد تولید سولفور نقره به رنگ سیاه می‌نماید. اکسیژن هوا به نقره آسیبی نمی‌رساند.همچنین در مقابل اغلب محلول‌های نمکی و غذایی نیز مقاومت دارد.

الکترولیت‌های آبکاری نقره

حمام‌های نقره کاری شامل سیانید ساده نقره٬ کربنات پتاسیم٬ سیانید پتاسیم یا سیانید سدیم می باشد. هنگامی که از سیانید پتاسیم استفاده می‌شود پوشش به سختی می سوزد. ضمنا لایه‌ها براق و حمام‌ها دارای خاصیت هدایت جریان بیش‌تری هستند. سیانید قلیایی موجود در الکترولیت تحت تاثیر CO2 موجود در اتمسفر به طور جزیی تجزیه شده و تولید کربنات می‌کند. کربنات تولید شده خاصیت هدایت الکتریسیته و قدرت نفوذ الکترولیت را زیاد می‌کند.
پوشش‌های نقره که در حمام‌های سیانیدی ساده ایجاد می‌شود کدر هستندو باید در هنگام پوشش‌کاری برش‌کاری نمود. عملیات اجتناب‌ناپذیر جلاکاری علاوه بر اینکه قیمت را بالا می‌برد٬ سبب از بین رفتن فلز نقره نیز می‌شوند. در حال حاضر حمام‌های نقره حاوی مواد افزودنی مختلف سبب ایجاد لایه‌های براق به کار برده می‌شوند. این حمام‌ها معایب الکترولیت‌های ساده را ندارند.

آبکاری با طلا

طلا فلزی‌ است قیمتی (نجیب)٬ به رنگ زرد٬ در طبیعت به صورت خالص پیدا می‌شود. طلا در مقابل اتمسفر٬ آب٬ محلول‌های نمکی و اسیدها آسیب ناپذیر است. تنها تیزاب (یک حجم نیتریک و سه حجم اسید کلریدریک) یا اسید کلریدریک با داشتن اکسیدکننده‌ها طلا را حل می‌کند. برای بهتر نمودن خواص پوشش طلای ترسیب شده به طریق الکتروشیمیایی٬ به الکترولیت‌های طلا مواد شیمیایی کاملا مشخص افزوده می‌شود. پوشش‌های آلیاژی نقش مهمی در روکش طلای الکترولیتی دارند. همچنین می‌توان به طور مناسبی خواص ویژه روکش‌ها٬ مانند سختی٬ براق نمودن و رنگ را تحت تاثیر قرار داد.
طلاکاری با ضخامت کم (آبنوس‌کاری الکتریکی طلا) درزرگری به کار می‌رود. ایجاد لایه‌هایی با ضخامت نسبتا نازک به ضخامت در حدود 0.01 الی 0.1 میکرومتر فلز پایه را در مقابل کدر شدن مقاوم می‌کند. به علاوه رفته رفته لایه‌های ضخیم به ویژه در قطعات صنعتی به کار می‌برند٬ به عنوان مثال در صنعت الکترونیک برای ارتباطات در مدارهای چاپی٬ در صنایع فضایی٬ در ساختن وسایل سفره (کارد٬ قاشق و چنگال) و در صنعت شیمیایی به عنوان ضدخوردگی.


تصویر


آبکاری با فلزات گروه پلاتین

به طو کلی پلاتین٬ پالادیوم٬ رودیوم٬ روتنیوم٬ اسمیوم و اریدیوم را فلزات گروه پلاتین می‌نامند. فلزات گروه پلاتین در صنعت مدرن رفته رفته اهمیت پیدا می‌کنند و از آنجایی که گرانبها هستند سعی می شود به جای استفاده از فلزات گروه پلاتین در صنعت پوشش کاری٬ از فلزات دیگر استفاده شود. از فلزات گروه پلاتین در صنعت تجهیزات آزمایشگاهی پیشرفته و مدرن٬ در صنعت الکتروتکنیک٬ در زرگری و در صنعت شیمیایی به عنوان کاتالیزور استفاده می‌کنند.

آبکاری اجسام غیر هادی

پوشش‌کاری مواد غیر هادی (مثلا : شیشه٬ موادمعدنی٬ نیمه‌هادیها٬ سرامیک٬ چرم٬ برگ درختان٬ چوب، پارچه و مواد پلاستیکی) به روش گالوانیک (الکترولیتی با استفاده از منبع جریان خارجی)٬ در صورتی که سطح آنها قبلا توسط یک روکش هادی جریان پوشیده شده باشد٬ ممکن خواهد شد. مشکلات فلز اندود نمودن غیر هادی‌ها٬ در ترسیب الکترولیتی نیست٬ بلکه در چسبندگی روکش فلزی است. غیرهادی ها بعد از یک آماده‌سازی کامل٬ آماده فلزاندود کردن هستند که بر روی آنها بتوان یک پوشش فلز با چسبندگی خوب افزود. در نتیجه فلزاندود نمودن مواد پلاستیکی٬ خواص جالب پلاستیک (برای مثال٬ وزن سبک٬ تغییر شکل آسان با کیفیت سطح استثنایی٬ ارزان قیمت بودن نسبت به فلز) با خواص روکش‌های فلزی حاصله از آبکاری با برق به دست می‌آید.

[+] نوشته شده توسط سیده سوسن میرصانع در 2:9 بعد از ظهر | | قالب بلاگفا
Template Design by Ali Lafzi Ghazi ::Tarah.somee.com
Copyright © 2007 By SHERMAN http://farzbro-chemistry.blogfa.com ALL right reserved RSS
شیمی - مقالات